An architecture to coordinate fuzzy behaviors
to control an autonomous robot

1 Giovanni Invernizzi Thomas Halva Labella

Matteo Matteucci

Andrea Bonarini

Politecnico di Milano AI and Robotics Project, Dipartimento di Elettronica e
Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, [-20133
Milano, Italy; http://www.elet.polimi.it/

Abstract

We propose an architecture to implement coordination among fuzzy behavior
modules for autonomous agents, in real-time tasks. Behavior coordination is ob-
tained by fuzzy conditions and motivations evaluated on information provided by
intelligent sensors and a world modeler. We also discuss the compatibility of our
architecture with cognitive models. We present the application of this architecture
in one of the domains we have faced with it: service and edutainment robotics.

Keywords. Behavior-based Robotics, Cognitive Robotics, Fuzzy Systems, Robotic
Architecture, Agent Architecture.

1 Introduction

One of the possible approaches to robot control design is the so called behavior—
based [1]. In such approach, the robot controller is obtained by the cooperative
activity of behavioral modules, each implementing a quite simple mapping
from sensorial input to actions. Each module operates on a small subset of
the input space to implement a specific behavior; the global behavior comes
from the interaction among all these modules. One of the major problems in

Email addresses: bonarini@elet.polimi.it ~ (Andrea Bonarini), inv-
ernizzi@elet.polimi.it (Giovanni Invernizzi), halva@libero.it (Thomas Halva
Labella), matteucci@elet.polimi.it (Matteo Matteucci).

1 This research is partially supported by the project “PRASSI”, co-funded by the
Italian Ministry of University and Scientific and Technological Research (MURST)
through the ENEA, and partially by the MURST Project “CERTAMEN”.

Preprint submitted to Elsevier Preprint 28 June 2001

behavior-based robotics is the design of this interaction, usually pre-defined
in terms of inhibitory relationships [1] or vectorial composition of the output
of the modules [2],[3],[4]. In this paper, we present a new model to design
such interaction, based on fuzzy logic. We introduce two sets of conditions
associated to each behavior in order to enable, inhibit and compose them in a
non-linear way, compatible with a cognitive model. The activation conditions
for each behavior module are fuzzy predicates which should be verified in or-
der to activate the corresponding behavior module; we call these predicates
CANDO conditions. Coordination among behaviors active at the same time
is implemented by a different set of predicates which represent motivations
to actually execute the action proposed by each module (WANT conditions).
CANDO conditions are intrinsically related to the behavior definition and are
used to select the behavior appropriate to the specific situation: if they are
not verified, the behavior activation does not make sense. WANT conditions
represent the opportunity of activating a behavior in a given context. The
context is described in terms of internal state, environmental situation, goals,
and interaction with other agents.

This approach to behavior activation is a part of a more general cognitive
architecture based on a four-layered cognitive model [5] which considers the
abstraction flow in knowledge formation from raw data to theory and models
through the formation of symbolic concepts.

We represent symbolic concepts by fuzzy models to face the issue of uncertain
and imprecise perception; a fuzzy model implements a classification of the
available information and knowledge in terms of fuzzy predicates, which have
been demonstrated to be a powerful and robust modeling paradigm [6], [3]
close to the designers knowledge models [7]. Other researchers [4], [3], [8]
have adopted them to implement control systems in autonomous robots for
analogous reasons. Moreover, fuzzy conditions make it possible to compose
behaviors through weights dependent on the situation and the motivational
state of the agent. We adopt this architecture on different robots involved in
a wide variety of tasks, such as: document delivery in an office environment,
surveillance, and soccer playing in Robocup [9].

In the next section we introduce the overall cognitive architecture describing
the role of our behavior management system BRIAN (Brian Reasonably Im-
plements an Agent Noddle), which is presented in section 3. In section 4 we
introduce edutainment robotics and specifically robotic soccer [9] as one of
the possible application environments for our architecture, which is general
enough to be applied in any situation where a mobile robot has to operate
autonomously. Section 5 is devoted to experimental results showing the effec-
tiveness of our approach to obtain complex behaviors by the fuzzy composition
of simple behavioral modules.

Theories /
Models
Theory / !
Model Layer
Structured
Knowledge
= 7=
Knowledg BRIAN
Processing

Layer

Symbolic
Concepts

LI

Concepts
Layer

World
Modeler

Features

LI

Intelligent
Sensors

Raw Data
Stream
N ‘
S enromen

Fig. 1. The overall architecture

Data
Layer

2 The overall architecture

BRIAN is the “behavioral” part of a cognitive architecture we use in different
applications.

The overall architecture is organized in four layers; each layer represents a
different level of abstraction from raw data to theories/models. Such an archi-
tecture is modelled on the reference cognitive model [5](figure 1) we summarize
here below:

e data layer: extracts basic features from raw data streams as a basis of even-
tual understanding; this layer is the only agent’s information interface to
the environment (the other layers work on features extracted by this one)

e concept layer: interprets and abstracts features to basic concepts and notions
at a higher level of abstraction (symbolic concepts)

e knowledge processing layer: processes symbolic concepts to obtain more com-
plex information to be used for planning actions, communicating and other
reasoning activities

e theory/models layer: contains structured abstract models and theories to be
used in information processing from “data” to “knowledge”

Intelligent sensors implement the data layer extracting basic features from

raw data streams. For instance, omnidirectional vision [10] [11] [12] provides
relative positions and distance of colored objects or the the angular position
of vertical edges for autonomous robot applications.

A World Modeler operates at the second layer to instance, and maintain in
time, a conceptual model of the environment inferring symbolic concepts from
data features by theoretical models belonging to the 4™ layer [13],[14]. In order
to do that, basic features extracted from intelligent sensors, are interpreted in
terms of higher level features, spatial relations and, then, in terms of ground
predicates to generate symbolic concepts in the second layer (e.g., “the red
object is close”, “the door is on the left”). This process is done according to
a cognitive/spatial model which is conceptually part of the fourth layer.

Executive modules in the behavioral component of the architecture belong to
BRIAN, which uses complex predicates, together with the ground ones, to
propose actions for the agent. Complex predicates are built from the ground
ones by using logic operators to describe less basic aspects or information at
a different level of abstraction.

The Planner module reasons on models in the 4™ layer to produce goals as
symbolic input to BRIAN; these concepts are included in the complex predi-
cates used in selecting and blending actions from different behavioral modules.
Models in the 4" layer can be abstract maps, graph representations, or even
state diagrams, used to forecast or simulate the result of future actions [15].

In this architecture, BRIAN implements local (usually reactive) behaviors
whose activation is ruled by strategic directions coming from the Planner. In
other terms, BRIAN implements a kind of local reasoning guided by the be-
havioral plan defined by the Planner (global reasoning). This, while generating
strategic directions, should solve possibly arising conflicts between behavioral
modules due to multiple conflicting goals.

3 BRIAN: the behavior management system

BRIAN, our behavior management system shown in details in figure 2, uses
fuzzy predicates to represent the activation conditions, the motivation con-
ditions and internal knowledge. In BRIAN fuzzy predicates may represent
aspects of the world, goals, and information coming from other agents. They
are represented by a label A, its truth value py, computed by fuzzy evaluation
of the input, and a reliability value &, to take into account the quality of the
data source. For instance, we may have a predicate represented as

< ObstacleInFront,0.8,0.9 >

Fuzzy Ground Predicates

Predicates
'
Enabling
Conditions Cando
Behavior Engine
Want
3 Behavior 1
¢ = | —
NS
S L
3
= L e s
== A 2
w Behavior N }7
Composer
Behavior Weigths Behavior Commands
Weighting
Fig. 2. The behaviour management system
which can be expressed as: “It is quite true (u), = 0.8, coming from the

fuzzyfication of the incoming real-valued data) that there is an obstacle in
front of the robot, and this statement has a reliability quite high (£, = 0.9,
due to the reliability of the sensing conditions)”

We consider ground and complex fuzzy predicates. Ground fuzzy predicates
range on data directly available to the agent through the input interface, and
have a truth value corresponding to the degree of membership of the incoming
data to a labeled fuzzy set. This is equivalent to classify the incoming data
into categories defined by the fuzzy sets, and to assign to this classification
a weight between 0 and 1. Fuzzy ground predicates are defined on features
elaborated by the world modeler and goals from the planner. The reliability of
sensorial data is provided by the world modeler basing on perception analysis,
and goal reliability is stated by the planner.

A complex fuzzy predicate is a composition (obtained by fuzzy logic operators)
of fuzzy predicates. Complex fuzzy predicates organize the basic information
contained in ground predicates into a more abstract model. In Robocup, for
instance, we can model the concept of ball possession by the OQwnBall predi-
cate, defined by the conjunction of the ground predicates BallVeryClose and
BallInFront, respectively deriving from the fuzzyfication of the perceived ball
distance, and the perceived ball direction.

We define for each behavior module a composition of predicates that enable
its activation: the CANDO preconditions. The designer has to put in this set
all the conditions which have to be true, at least to a significant extent, to

give sense to the behavior activation. For instance, in order to consider to kick
a ball into the opponent goal, the agent should have the ball control, and it
should be oriented towards the goal.

Another composition of fuzzy predicates is associated to each behavior module:
the WANT conditions. These are predicates that represent the motivation
for the agent to activate a behavior in relation with a context. They may
come either from the environmental context (e.g., TargetInFront, which may
be expressed as “my target is in front of me”), or from strategic goals (e.g.,
CollectDocuments, “I have to collect the documents I’ll have to deliver”). All
these predicates are composed by fuzzy operators, and contribute to compute
a motivational state for each behavior. The agent knows that it could play
a set of behaviors (those enabled by the CANDO conditions), but it has to
select among them the behaviors consistent with its present motivations.

3.1 Qutput generation

Each behavior module receives data in input and provides an output to be
addressed to the actuators. In BRIAN, we do not make any hypothesis about
the implementation of a behavior module. In general, it can be viewed as a
mapping from input variables to output variables:

where I; is the set of input variables for the module, and A; is the set of its
actions.

In the application that we will discuss in the rest of the paper, behavior
modules are implemented as fuzzy logic controllers (FLC): a set of fuzzy rules
matches a description of the situation given in terms of fuzzy predicates, and
produces actions for the actuators by composing the output proposed by each
rule by a T-conorm. Other implementations are possible, for instance as neural
network modules, mathematical models, or generic computer programs.

BRIAN first computes the CANDO conditions and selects the behaviors that
can be activated, since they have a CANDO value p{ higher than a given
threshold 7, which can be defined by the designer or even learnt by experi-
ence [16]. Then, BRIAN computes the A; produced by the selected behaviors
associating each of them with the respective pf value. Finally, the motivation
conditions are evaluated, and the result pis used to weight the actions a;,
together with the CANDO values. The final action a/ comes from the vectorial

composition of the so-obtained values.

al = o g du (2)
A;€eA

a;k€A; N [Lf—>7’

This is the implementation we are adopting in the application we are pre-
senting. However, in BRIAN, we do not make any commitment about the
composition of the output from the behavior modules. In particular, alter-
natively, it would also be possible to select the best action, according to the
motivation values, with a formula like:

= > @y :argmaz; (4 pl), (3)

A €A;

where argmaz; is the standard function that returns the value of its sub—
index (7 in this case) for which its argument is maximum. The first approach
is followed by the majority of the existing fuzzy behavior management sys-
tems [4] [3] [8], since it is analogous to the traditional way of composing
output from fuzzy rules; a similar method is adopted also in other non—fuzzy
architectures [2]. However, at least in principle, in behavior design, all the
possible interactions with other behaviors should be taken into account since
the vectorial combination of two actions may produce undesired effects (think,
for instance, at the action that may result from the combination of the ac-
tions proposed by the AwvoidObstaclesFromLeft and the AvoidObstaclesFrom-
Right behaviors, when facing an obstacle). In principle, this design approach
is in contrast with the behavior-independency principle, fundamental in the
behavior-based approach to robot control design. The second solution, that
is selecting the action proposed by the best fitting behavior, prevents the
possibility to pursue multiple goals in parallel.

Both the approaches are implemented in BRIAN and it is possible to select
the best one for the application; the behaviors we will show in section 5 are
composed by vectorial sum, but we have carefully designed the motivation con-
ditions in order to avoid the activation of two incompatible behaviors at the
same time, to avoid the accomplishment of partially fulfilled opposite require-
ments. This implements a sort of compromise between the two composition
methods above mentioned, and can be applied in any domain to have at the
same time behaviors whose outputs are composed, and behaviors which are
incompatible each other.

4 An application: playing robotic soccer

We have applied our approach both in service and edutainment robotics. Here,
we focus on this last, namely, robot soccer playing, since a Robocup [9] match
provides a rich and challenging environment where our approach clearly shows
its effectiveness.

Robocup is an initiative bringing together hundreds of researchers every year,
competing on common testbenches concerning the implementation of effective
autonomous robots. There are different competitions, and we describe here the
results we have obtained in the F-2000 league of real robots. Here, each robot
can have a maximum width and length of about 50 cm. It should be able to
play soccer autonomously, by interacting with 3 teammates and 4 competitors
in a field sized 4x9 meters. The ground is a green carpet surrounded by white
walls, the ball is reddish, all robots should have a “mostly” black body and
a cyan or purple marker (a color for each team) 10 cm high, visible from any
direction and positioned between 30 and 60 cm above the ground. The ball
and the robots can move at more than 1 m/sec. At the first Robocup World
Championships (Paris-98 [17], Stockholm-99 [9]) the main challenge was to
detect the relevant elements on the field (ball, opponents, goals) and decide
reasonable actions in accordance. In the last World Championship [18] some
non trivial behaviors have been seen, and the issue of designing appropriate
behaviors emerged as really important. Some robots began to show behaviors
which seem close to those of human players.

Our players Rullit and Rakataa (respectively represented in figure 3(a) and
(b)) have been part of the Italian national soccer team ART (Azzurra Robot
Team [19]. We implemented for them ten fuzzy behaviors whose composition
enables the robots to play effectively in a match, fighting for the possess of the
ball, avoiding walls, other robots, and fouls, kicking in the opponents’ goal,
and taking a defense behavior when the own goal-keeper has problems. The
ten basic behaviors are: AlignRight, AlignLeft, GoToGoal, Kick, AvoidObstacle,
AvoidWall, DefendLeft, DefendRight, GetOffOwnArea, Midfield.

All our robots, although mechanically different from each other, are equipped
by an omnidirectional vision sensor [11], which provides every 100 msec infor-
mation about the position of the other robots, the ball, and relevant elements
of the field. This information is fused in a map with analogous information
coming from other robots through the radio ethernet link. The presentation of
this complex process is beyond the scope of this paper and has been described
elsewhere [14]. The fuzzy predicates used by BRIAN are evaluated from the
map.

We can identify subsets of behaviors which are intended to be activated in

Fig. 3. Our robots Rullit (a) and Rakataa (b).

sequence, and their conditions have been designed to avoid interference. For
instance, AlignToBall aligns the robot to the direction of the line between
the ball and the opponent goal (all our robots have an omnidirectional vision
system, so they almost always know where the ball and the goal are); GoToBall
brings the robot on the ball when it is in the forward direction. The CANDO
conditions for AlignToBallinclude the fact that the ball is visible and that the
robot is not aligned nor controls it. Notice how these are essential conditions
for the behavior. Among the WANT conditions for GoToBall we have that
the ball should be in the forward direction. The AlignToBall behavior tends to
make this condition true, and, when this is the case, the context is favorable
to the activation of GoToBall. Both the behaviors cooperate to bring the
agent in a position from where it can take the ball and bring it towards the
goal. The GoToGoal behavior has among its CANDO conditions predicates
corresponding to have the control of the ball and to be aligned to ball and
goal: so it can be activated only when both the other mentioned behaviors
have achieved their goals.

We have also defined behaviors to take care of the integrity of the robot: these
inhibit the others in order to handle critical situations. They are devoted to
solve possible problems such as the presence of obstacles or walls in the desired
movement directions. We have designed the enabling conditions for these be-
haviors to implement exclusive activation (as discussed in details in the next
section). In particular, all the WANT conditions of the incompatible behav-
iors contain the control predicate stating that none of the “avoid” behaviors
should be active. In this way, if the robot has to avoid something, it does this
without any interference from the other behaviors, was action is considered as
undesirable when an “avoid” behavior is active.

Interesting behaviors emerge from the interaction of behaviors belonging to the
two sets. For instance, we have seen Rakataa dribbling a couple of opponents

due to the appropriate switching between AvoidObstacle, Align and GoToGoal.
The co-operation of these behaviors made the robot react, when facing an
opponent, by throwing the ball aside (obtained by a fast rotation decided by
the Avoid behavior in order to get around the obstacle) and running to catch
it again (composition of Align first and GoToGoal then).

A second emergent behavior is a sort of defense behavior made by the co-
operation between AvoidWall, AvoidObstacle and Defense behaviors. When
the ball is close to the wall with another robot that is trying to catch it, our
robot stays still, covering its goal area, watching the other robot and waiting
that it gets rid of the situation, since Avoid Wall prevents the robot to get close
to the wall. Once the opponent brings the ball away from the wall, Rakataa
is ready to close it on the wall again, by applying a Defend behavior. Notice
that the F-2000 rules state that when the ball is not moving for more than 10
seconds (e.g., because a robot is blocking it against the wall), then it should
be removed by the referee and positioned in another position. The mentioned
behavior gives also the robot the possibility to stay away from the wall and
be ready to get to the new ball position when it is re-positioned.

The third emergent behavior we mention here makes the robot catching the
ball near an opponent or a wall. It is obtained by the co-operation between
Align and AvoidWall or AvoidObstacle. When the ball is close to a wall (with-
out any other robot in the neighborhoods) or close to another robot, the
switching between behaviors makes the robot approaching slowly the ball
(since it is close to it) with fast and impulsive rotations due to activation
of the AvoidWall behavior which tries to avoid the contact with the wall by
turning the robot body. When it is close enough to the ball, the result of the
interaction between these behaviors is a sort of kick with the robot’s hands
that throw the ball away from the obstacle.

5 Experimental results

In this section we present in details the results obtained in a particular experi-
ment where the robot executes a standard Robocup challenge used in this case
to test the composition of behavioral modules. In this application, each behav-
ior module is implemented by fuzzy rules that infer actions from ground and
complex predicates. This implementation is not mandatory, since BRIAN can
manage any kinds of behavioral modules (PID control modules, neural net-
works, etc.) each related to its sets of CANDO and WANT fuzzy conditions,
used to select the behaviors to be activated and to compose them.

In figure 4(a) and 4(b) you can see the experimental setting of the test in
two different moments and the trajectory executed by the robot. The black

10

]]
° o
8, ®
'y ®

(a) (b)

Fig. 4. The trace of robot trajectory during the test and the position objects at
start (a) and after 0.6 (b) seconds.

objects are static obstacles the grey one is the ball to catch and kick in the
goal. Track in the plots are taken from real data; we use half of a standard
Robocup playground during the challenge, and the trajectory is projected on
the field using the odometry of the robot. You can see the initial condition
of the test in figure 4(a), the position of our robot (the white block) and the
trajectory executed to catch the ball (the gray object in the picture) and kick
it in the goal. After 0.5 sec. the robot, incidentally touching the ball, moves
it to the position plotted in figure 4(b). So it has to dynamically change its
behavior to accomplish this unforeseen situation. The trajectory executed by
the robot is obtained by selecting and blending different actions proposed by
different behavioral units and reacting to changes in the environment (e.g.,
the variation of ball position).

In this experiment we use only six simplified basic behaviors to show the ef-
fectiveness of our approach. BRIAN selects and combines actions proposed by
different modules using fuzzy logic and fuzzy operators. We present their de-
scription introducing a preliminary methodology for the definition of CANDO
and WANT conditions.

e AvoidObstacle: the robot avoids the collision with obstacles when they inter-
fere with the present moving direction; the behavior implemented by fuzzy
rules in this module gives results similar to those of an implementation of an
Artificial Potential Field [20]. It is always active when the robot is moving
autonomously, but it make sense only if there are some obstacles to avoid.

o AlignRuight: if the robot is not aligned with respect to the goal-ball direction
it moves to reduce this displacement; this behavior is activated when the
robot is in the left part of the field with respect to the goal-ball direction

11

Behavior CANDO WANT
. (AND (AutoMode)
Avoid Obstacle (ObstaclePresent)) (AutoMode)

Align Right

(AND (AutoMode)
(AND (AND (BallSeeing)
(NOT (RigthAligned)))
(NOT (AND (BallOwner)
(Aligned)))))

(AND (AND (AutoMode)
(OR (AlonePlayer)
(ForwardRole)))
(AND (NOT (ObstacleAvoiding))
(NOT (GoalNear))))

(AND (AutoMode)
(AND (AND (BallSeeing)

(AND (AND (AutoMode)
(OR (AlonePlayer)

Align Left (NOT (LeftAligned))) (ForwardRole)))
(NOT (AND (BallOwner) (AND (NOT (ObstacleAvoiding))
(Aligned))))) (NOT (GoalNear))))
(AND (AutoMode) (AND (AutoMode)
Go to Goal (AND (BallOwner) (AND (NOT (AbstacleAvoiding))

(Aligned)))

(NOT (GoalNear))))

Kick in Goal

(AND (AutoMode)
(AND (BallOwner)

(AND (AutoMode)

(Aligned))) (GoalNear))

Manual Move (NOT (AutoMode)) (NOT (AutoMode))

Table 1
CANDO and WANT conditions for each behavior

(that is the ball is on the right of the robot). The robot “wants” to align
when it is moving autonomously (AutoMode), it is not avoiding obstacles,
and it is the forward role player or the only player in the field. It make sense
to AlignRight if the robot is not aligned having the ball or does not see the
ball.

o AlignLeft: is the symmetric of AlignRight.

e GoToGoal: when the robot owns the ball, it goes in the goal direction,
pointing the free portion of it. In order to go towards the goal the robot has
to be aligned to the goal owning the ball and in AutoMode, it has to do that
if it is not avoiding an obstacle or it is not near the goal. In fact, it has to
stop when it is near and then kick.

e KickInGoal: when the robot is close enough to the goal, executes the action
corresponding to activate the mechanical kicker. The robot kicks when it is
close to the goal, but only if it owns the ball.

e ManualMowve: this module implements the manual command for the robot
and it is used to control the robot when it is not in autonomous mode. This
behavior is active if and only if the robot is not in AutoMode. The use of
AutoMode predicate is to ensure that ManualMove and other behaviors are
mutually exclusive.

In this particular setting we use simplified CANDO and WANT conditions for
each behavior; we present in table 1 such conditions in the lisp-like notation
we use in BRIAN.

The predicates appearing in the fuzzy conditions are computed by evaluating
fuzzy sets on data provided by the map, and composing them. In figure 5,
you may see the definition of some of the fuzzy sets involved in the definition
of the above mentioned predicates. In particular, we have reported the frame

12

A

H
1 | dignedl alignedright alignedleft aligned?
T
0] 3040 180 320 330 360 ang|e
M
1 close near far
inkick
>
0 30 40 50 70 100 120 distance
H
1 [N1 NW W SW S SE E NE N2

T
0 153045 8595 130140 175185 220230 265275 310 330345360 ang|e

Fig. 5. The definition of some of the fuzzy sets used to compute the predicates
involved in CANDO and WANT conditions of the behavior modules developed for
Robocup.

of cognition of the alignment with the ball (covering the angle between the
heading of the robot and the direction of the ball), the distance to the ball,
and the direction of the ball (another frame of cognition covering the same
angle mentioned before).

The BallOwner predicate is computed as (AND BallNord BallInKick), where
BallNord comes from (OR N1 N2) computed from the third frame of cogni-
tion reported in figure 5, and BallInKick comes from the value of InKick
from the distance frame of cognition. The Align predicate is computed as (OR
Aligned1l Aligned2). Analogous computations bring to the evaluation of all
the needed predicates.

As you may notice from the definitions of the WANT conditions of AlignLeft
and AlignRight in table 1, it is possible to include in them also context descrip-

13

T T T
M\gn ight
T T T T T T
M@n G
T T T T
:::1—‘—‘—‘0 0 Goal
T T T T T T T T

A

Activation Level
Activation Level

"Rick T Goal
. .

o

‘
Y W
lanuar Move

0.

o »n Lo O kPO O rO O RO O Lo O &
T T

L L L L
0.2 0.4 0.6 0.8 1

(a) (b)

Fig. 6. The activation level of CANDO (a) and WANT (b) conditions during the
test.

tion predicates like the actual role of the teammate (i.e., (ForwardPlayer))
or the explicit reference to other behaviors (i.e., (ObstacleAvoiding)).

During the experiment we are presenting, we have logged the activation level
of CANDO and WANT for each behavior module (figure 6(a) and (b)) and
the final behavior activation level coming from the combination of CANDO
and WANT (figure 7). From figure 6(b) you may notice that, during this
experiment, the WANT conditions for Align Left, AlignRight and GoToGoal
have the same activation level, since the robot is playing alone so the predicate
(AlonePlayer) is always verified and the other conditions are the same for
all the behaviors.

We can analyze the global behavior of the robot by looking at figure 7 and
considering the traces in figure 4. The robot switches in AutoMode after 0.1
seconds than starts the alignment procedure with the AlignRight behavior un-
til it reaches the ball and displaces it, at time 0.6, trying to avoid the frontal
obstacle. During this part of the test the first obstacle is not considered so rel-
evant due to its distance. Once the robot misses the ball it has to restart the
alignment to the ball, this time using the AlignLeft behavior. Now, the first
robot is perceived as an obstacle for the maneuvering task and this produces
a behavior obtained by selection and blending of different modules (Align-
Right, AlignLeft and AvoidObstacle) from time 0.9 to time 1.3. At this time,
it is aligned to the goal and the GoToGoal behavior controls the robot until
the KickInGoal one activates the mechanical kicker. During this phase the
goalkeeper is considered as an obstacle so the active AwvoidObstacle behav-
ior influences the straight trajectory proposed by the GoToGoal making the
robot turning slightly left. This results in an optimal strategy to approach the
kicking moment. After that, at time 1.7 the robot switches out of AutoMode.

14

Avoid Obstacle

Activation Level

0 0 to Goal
T T T T

0 ‘ ‘Rick T Goal
1 T T
0.5
0 Nanuar Move
1 T T T T T T
O Il Il Il Il Il Il
0.2 0.4 0.6 0.8 1 1.2

Time (sec.)

Fig. 7. The logical value of behavioral unit activation during the test

6 Related work

Our architecture follows the Saffiotti’s approach [3][8] to the use of fuzzy
logic in robotics [4], which tries to face the problem of designing an effective
controller for mobile robots by combining goal-specific strategies by resolution
of conflicts between multiple objectives. We keep separate the CANDO from
the WANT conditions, due to their different semantics, while in [3] they are
put together in the desirability parameter. Keeping separated those conditions
is important for design flexibility and has cognitive plausibility e which makes
also the design process closer to the designer way of thinking.

Our behavior architecture is quite different from the Brooks’one [1]: our be-
havior management system works on fuzzy predicates obtaining the capabil-
ity of coordinating the concurrent execution of several behaviors. We consider
the adoption of CANDO and WANT predicates as an alternative choice to
the implementation of the subsumption architecture. It is more general than
Brook’s proposal and also more effective in strongly dynamic environments.
In our implementation the enabling connections among behaviors are context
dependent, so relationships among behaviors are not rigidly defined, but we
can adapt the emerging global behavior, depending also on external conditions
and motivations.

Another reference we have considered is Arkin’s schema-based behavior ar-
chitecture [2]. It is possible to map the basic principles of our and Arkin’s
approaches into each other. The main difference is the fuzzy model we put at
the basis of our architecture, whereas the analogous features are represented

15

by Arkin by different tools such as a gain value to weight each behavior con-
tribution, and their representation in terms of potential fields. However, the
gain has a different meaning, stating the a priori relevance of a behavior with
respect to another, while we blend (or select) behaviors according to their
condition values and context in any time instant.

Another difference between our architecture and both Brooks’ and Arkin’s
is the presence in ours of a world modeler that interfaces the external world
with the behavior module. In the mentioned architectures, world modelling is
embedded in each behavior definition. We have implemented such a module
to achieve efficiency and to provide a unified interface from the environment
to the behaviors.

7 Conclusion

We have presented in this paper a general behavioral architecture for au-
tonomous robots based on fuzzy models. We have focused on the behavior
management module, whose most relevant feature is the use of fuzzy enabling
and motivation conditions. It has been designed to make it possible different
types of interaction among behavior modules and to face virtually all applica-
tion environments. Fuzzy models give robustness to the system with respect
to inaccuracy in data acquisition and uncertainty, and make quite easy the
definition of behaviors and their interaction.

Learning may support the development and adaptation of robotic agents. In
particular, we have shown elsewhere [16],[21] how it could be possible to adapt
behaviors in a short time to new environments by tuning their context pred-
icates. The architecture here presented is essential in this activity, since it
makes distinct the different aspects (CANDO, WANT, and behavior code)
which can be separately designed, learned or adapted. We are presently work-
ing at an extensive use of learning mechanisms working on these aspects to
adapt in real time the robot behaviors to different environmental conditions.

References

[1] R. A. Brooks, A robust layered control system for a mobile robot, IEEE Journal
of Robot Automation 2 (1) (1986) 14-23.

[2] R. C. Arkin, Behavior-Based Robotics, MIT Press, Cambridge, MA, 1998.

[3] A. Saffiotti, K. Konolige, E. H. Ruspini, A multivalued-logic approach to
integrating planning and control, Artificial Intelligence Journal 76 (1-2) (1995)
481-526.

16

[4] A. Saffiotti, The uses of fuzzy logic in autonomous robot navigation, Soft
Computing 1 (1) (1997) 180-197.

[5] F. J. Radermacher, Cognition in systems, Cybernetics and Systems 27 (1996)
1-41.

[6] G.J.Klir, B. Yuan, U. S. Clair, Fuzzy set theory: foundations and applicatons,
Prentice-Hall, Upper Saddle River, NY, 1997.

[7] L. A. Zadeh, Making computer think like people, IEEE Spectrum (1984) 26-32.

[8] K. Konolige, K. Myers, E. Ruspini, A. Saffiotti, The saphira architecture:
A design for autonomy, Journal of Experimental and Theoretical Artificial
Intelligence 9 (1) (1997) 215-235.

[9] M. Asada, H. Kitano, I. Noda, M. Veloso, Robocup: today and tomorrow —
what we have learned, Artificial Intelligence Journal 110 (1999) 193-214.

[10] Y. Yagi, S. Kawato, S. Tsuji, Real-time omnidirectional image sensor (copis)
for vision-guided navigation, IEEE Transactions on Robotics and Automation
10 (1) (1994) 11-22.

[11] A. Bonarini, P. Aliverti, M. Lucioni, An omnidirectional vision sensor for fast
tracking for mobile robots, IEEE Trans. on Instr. and Meas. 49 (3) (2000) 509
512.

[12] P. Lima, A. Bonarini, C. Machado, F. Marchese, C. Marques, F. Ribeiro,
D. Sorrenti, Omni-directional catadioptric vision for soccer robots, Journal of
Robotics and Autonomous Systems .

[13] S. Coradeschi, A. Saffiotti, Anchoring symbols to vision data by fuzzy logic,
Lecture Notes in Computer Science 1638 (1999) 104-112.

[14] A. Bonarini, M. Matteucci, M. Restelli, Anchoring: do we need new solutions to
an old problem or do we have old solutions for a new problem?, in: Proceedings
of the AAAIT Fall Symposium on Anchoring Symbols to Sensor Data in Single
and Multiple Robot Systems, AAAT Press, Menlo Park, CA, 2001, p. In press.

[15] G. L. Drescher, Made-up minds: A constructivist approach to artificial
intelligence, Ph.D. thesis, MIT EECS Department, (Reprinted by MIT Press.)
(Sep. 1989).

[16] A. Bonarini, M. Matteucci, Learning context motivation in coordinated
behaviors, in: Proceedings of IAS-6, IOS Press, Amsterdam, NL, 2000, pp. 519—
526.

[17] M. Asada (Ed.), RoboCup-98: Robot Soccer World Cup II, Springer Verlag,
Berlin, D, 1998.

[18] P. S. G. Kraetzschmar, T. Balch (Eds.), RoboCup-2000: Robot Soccer
WorldCup IV, Springer Verlag, Berlin, D, 2001.

17

[19] D. Nardi, G. Adorni, A. Bonarini, A. Chella, G. Clemente, E. Pagello,
M. Piaggio, Art — azzurra robot team, in: M. A. M. Veloso, E. Pagello (Ed.),
RoboCup 98-Robot Soccer World Cup III, Springer Verlag, Berlin, D, 2000,
pp- 695-698.

[20] C. W. Warren, Global path planning using artificial potential field, in:
Proceedings of IEEE International Conference on Robotics and Automation,
Vol. 1, IEEE Computer Press, Piscataway, NJ, 1989, pp. 316-321.

[21] A. Bonarini, Evolutionary computing and fuzzy rules for knowledge acquisition
in agent-based systems, Proceedings of IEEE In press.

18

