Fuzzy and Crisp Representations of Real-valued Input
for Learning Classifier Systems

Andrea Bonarini, Claudio Bonacina, Matteo Matteucci
Politecnico di Milano AI and Robotics Project
Dipartimento di Elettronica e Informazione - Politecnico di Milano
Piazza Leonardo da Vinci, 32 - 20133 Milano - Italy
E-mail: bonarini@elet.polimi.it - http://www.elet.polimi.it/people/bonarini

Abstract

We discuss some issues concerning the appli-
cation of learning classifier systems to real-
valued applications. In particular, we fo-
cus on the possibility of classifying data by
crisp and fuzzy intervals, showing the effect
of their granularity on the learning perfor-
mance. We introduce the concept of sensorial
cluster and we discuss the difference between
cluster aliasing and perceptual aliasing. We
show the impact of different choices on the
performance of both crisp and fuzzy learn-
ing classifier systems applied to a mobile, au-
tonomous, robotic agent.

1 Introduction

There is an increasing interest in the Learning Clas-
sifier Systems (LCS) community about issues related
to the application of LCS to real-valued environments.
Most of the LCS applications proposed up to now work
on gridworlds [10] or an interval-based representation
of the input [7]. When interfacing to the real world
by real-valued sensors, the selection of the interval
granularity becomes a relevant issue. A fine-grained
classification translates in a large search space, and
a coarse-grained classification tends to induce percep-
tual aliasing [9]. We discuss some criteria to face this
trade-off in section 2, where we also discuss the re-
lationships between the interval-based representation
partitioning the sensor data space, and the traditional
gridworld, where the partition is done on spatial di-
mensions, strictly related to the configuration space
(c-space). We remind here that the c-space is the
space of the variables needed to completely describe
the relevant aspects of a system, in general, and of a
robot, in our case. In section 3, we propose to adopt

fuzzy intervals as a representation of the classifier in-
put [3, 5]. Considering an interval-based model and a
fuzzy one with the same number of intervals, the infor-
mation content of a fuzzy representation is very close
to that of a real-valued representation, and consider-
ably higher than that of an interval-based. Moreover,
the selection of certain well-known configurations of
fuzzy intervals (discussed in Section 3) guarantees high
robustness to noise and certain design errors [8]. How-
ever, the introduction of partially overlapping fuzzy
intervals rises some learning problems that can be re-
duced by a careful redesign [6] of the classical rein-
forcement distribution algorithms. In section 4, we
present the simplified learning classifier system that
we have devised to test our proposal. In Section 5, we
show the results we have obtained on a simulated mo-
bile robot, where we consider most of the real world
features, including stochastic and systematic noise, ap-
proximation, and uncertainty in sensors and actuators.
The aim of this paper is to discuss the issues concern-
ing learning crisp and fuzzy interval representations
when operating with real-valued input/output; in par-
ticular we do not introduce "new” RL algorithms, pre-
sented and compared with other proposals elsewhere
[1, 2, 3, 5, 6], nor we discuss about genetics, general-
ization, or the reinforcement function in our proposal.
The considerations we present in this paper are general
enough to be relevant for any RL algorithm operating
on real values.

2 Grids, granularity, and real values

The information needed by a LCS is usually dis-
cretized, in order to have classifiers working on a finite
set of input and output values. Most of the work done
in the past in this field is based on gridworlds, where
an animal moves from one cell to another connected
to the first, and perceives the presence of elements
fully occupying cells. The kind of discretization we

Out Close Medium Far

X

1350 1650

X

-10 600 900

3240 sonar dist [nm]

Out Close Medium Far

-10 750 1500 3240 sonar dist [mm]

Figure 1: The fuzzy membership functions (above) and
the intervals (below) to interpret the distance mea-
sured by a sonar sensor.

are proposing in this paper is diflerent, since it is done
on the information coming from sensors. We call the
set of real values, one for each input variable, a real-
valued state. We classily the real input values into
classes corresponding to either crisp or fuzzy intervals.
In figure 1 you may see such a classification for the dis-
tance measured by a sonar sensor. On the ordinates
the degree of membership p to each interval (below in
the figure) or fuzzy set (above) of the distance reported
on the abscissas.

We call the set of crisp intervals, one for each input
variable, matching a real-valued state, a crisp state.
We call the set of fuzzy sets, one for each input vari-
able, matching a real-valued state, a fuzzy state. In the
following, we will refer to both these interpretations of
a real-valued state with the common term state. The
main point is that this discretization is done on the
animat perception, whereas the discretization in grid-
worlds is usually done on the environment where the
animat operates, which corresponds, in general, to a,
eventually partial, view of the c-space.

The other main difference concerns the type of move-
ment the animat can do. In gridworlds, it can move
from one cell to another (taking one of at most 8 pos-
sible actions from one position), in a real-valued world
it can change its position in the c-space (with a real-
valued move), but this may, or may not, bring the
animat in a different state. The shift from a state to
another is not linearly related to the movement. De-
pending on the sensors, their distribution, the classifi-
cation model (and on the position in the environment,
of course), the same movement may either bring the
animat in a different state or not. As we show in sec-
tion 5, the fact that an action brings quite often in
a different state heavily influences the learning perfor-
mance. The relative frequency of state change depends

both on the granularity of the classification of the in-
put space, and on the duration of the perceive-act (or
control) step. This is the second type of discretiza-
tion we need to do. In gridworlds, the duration of the
control step is just one tick of an ideal clock; things
may change at each tick, and, usually, the animat can
move, in a tick, only from one cell to a connected one:
its speed is one cell per tick. In the real world, we
have real time, and real-valued output (in our case,
speed and steering). The control step duration has a
lower bound in the physical time needed to perceive
(i.e., acquire and elaborate data from sensors), select
the action, and send it to the actuators. The actual
duration of the control step may be selected as a trade-
off between the need of fast reaction, to select at each
moment the best action, and the desire of changing
state at each step, to improve the effectiveness of the
learning process. The results we present in section 5
show the impact of the length of the control step on the
learning activity. This becomes even more important
when the LCS receives the so-called continuous rein-
forcement, i.e., it is reinforced at each control step. If
we call the time interval between two reinforcements
an evaluatlion step, we may say that, with continuous
reinforcement, the control step is identical to the eval-
uation step. A possibility to keep a fast reaction, but
also a good chance of changing state between two sub-
sequent evaluation steps, is to select an evaluation step
larger than the control step. A first intuition about
the importance of this problem was already present
in [1, 3], where the term episode was used to name
a sequence of control steps at the end of which a re-
inforcement is given. An even more radical approach
is taken by many researchers, who evaluate the per-
formance only when the system reaches a different in-
terval (or fuzzy) state. The difference with respect to
the episode approach is that, during an episode, the
system may visit different states. In both cases, the
action selected for a state is kept the same until the
performance is evaluated, at the end of an episode, or
when the system enters a new state.

Another important problem related with discretization
concerns the aliasing phenomenon. Let us call the set
of real values belonging to the same (crisp or fuzzy)
interval state a sensorial cluster. All the real-valued
states belonging to a sensorial cluster are classified in
the same state, and correspond to the same subpop-
ulation of classifiers. From each real-valued state it
is possible to select one of the competing classifiers
in the subpopulation matching the state, obtaining,
in general, different reinforcements. Notice that the
same classifier may be triggered by any of the real-
valued states belonging to the sensorial cluster, and

that, in general, the reinforcement function varies in-
side a sensorial cluster. Let us call the situation where
it is possible to do an action that does not bring out
of the cluster aliasing. This may cause problems to
the learning algorithm since the same classifiers may
have different reinforcement. The larger is the cluster,
the higher is the possibility to obtain different rein-
forcements for the classifiers belonging to the corre-
sponding subpopulation, the lower is the accuracy of
the LCS to learn the correct action to take from a
sensorial cluster. This is another motivation to keep
the cluster (and the corresponding state) as small as
possible. Let us notice that cluster aliasing is slightly
different from perceptual aliasing [9], defined as having
the same internal representation for different states.
Perceptual aliasing concerns the representation of the
percepts, cluster aliasing concerns the fact that actions
done in a state do not bring out from it. In perceptual
aliasing the problem is that there is the possibility to
take the same reinforcement in different situations, in
cluster aliasing is the opposite: taking different rein-
forcements for the same classifier causes problems to
the learning activity.

3 Motivations for fuzzy intervals

Since their introduction in the late sixties, fuzzy sets
have been adopted to map real numbers to symbolic
labels. Elements of an universe of discourse belong
to a fuzzy set to a certain extent, according to the
so-called membership function that defines it. Let us
consider an universe of discourse X (say, an interval of
real numbers), and a fuzzy set, associated to the label
close, defined by a membership function fig,s(-) that
ranges on elements of the universe of discourse and
maps them to the real interval [0,1] (see figure 1). We
can say that an element Z of the universe of discourse
(in our case a distance in mm) belongs to the fuzzy set
close to the extent piops¢(Z). For the fuzzy set close in
figure 1, fic105¢(690) = 0.7. Giving a semantic value to
the fuzzy set, we can say that the value £ = 690 can
be classified as close with a degree of 0.7.

Fuzzy sets are often used to classify real values in
categories, thus making it possible symbolic reason-
ing about the phenomena that underlie the incoming
numbers. Membership of a number (e.g., Z) to a fuzzy
set (e.g., close) includes two kinds of information: the
name of the fuzzy set, that brings information about
the category to which the number is classified, and the
degree of membership (e.g., Leiose(T)) that comes from
the definition of the fuzzy set. The membership value
can be considered as an alternative representation of
Z, although it is unique only for the class of monotonic

membership functions. In general, the relationship be-
tween a real value T and its degree of membership to a
fuzzy set I, u7(Z), is not bijective. This potential prob-
lem is solved by defining partially overlapping fuzzy
sets, and considering as representative of T the set of
all the values 14(Z), V L.

Fuzzy rules represent relationships among fuzzy sets.
Since the mapping between a number and its classi-
fication is crisp and well-defined, we can say that a
fuzzy rule is a compact representation of a relation-
ship between the real values that can be classified by
the fuzzy sets in its antecedents and consequents. A
set of fuzzy rules implement a mapping among real
values that combines the mappings implemented by
each rule. So, a fuzzy LCS is a way to consider dif-
ferent local models (fuzzy rules) to obtain a complex,
in general non linear, mapping [2]. In particular, it is
common to consider partially overlapping fuzzy sets,
as the ones represented in figure 1. In this case, any
set of real values for the input variables is matched
to some extent by at least two rules. In particular,
it can be demonstrated that if the sum of the mem-
bership values equals 1 for any value in the range of
the variable, the robustness of the system with respect
to noise is optimal [8]. To summarize: fuzzy sets can
provide an alternative representation of real numbers,
a fuzzy rule implements a model that maps real values
to real values in given intervals, a set of fuzzy rules
implement a complex mapping on the full range of the
involved variables. These are the main reasons why
fuzzy LCS are an interesting approach to learn rela-
tionships among real values.

With respect to a real-valued representation, fuzzy
LCS introduce an abstraction level that reduces the
search space and makes it possible to reason and learn
on symbolic models. The accent on local models
(shared with the interval representation) implies the
possibility to learn by focusing at each step on small
parts of the search space only. An interesting as-
pect of the fuzzy interpretation, when compared with
the interval-based, is the possibility to have a smooth
transition between close models: a real value in in-
put is interpreted in a way similar to the close values
in any region of the input range, while an even small
difference in values across the crisp interval bound-
aries gives rise to radically different interpretations.
The smooth transition among different models imple-
mented by fuzzy rules implies robustness with respect
to data noise [8].

This aspect have some impact also on the learning
process. The interaction among local models, due to
the intersection of neighbor fuzzy sets guarantees that

6[rad]
2n i N7
3ni2
Close
" M edium
O Far
2
[XA
0 d[mm]
'S
6 [rad]
2n RIS
3n/2
Close
. %;&51\\\\)&@ } M edium
] Far
2
==
o d[mm]

Figure 2: The crisp (above) and fuzzy (below) inter-
pretations of data from one sonar reported on the c-
space.

local learning (in the niche corresponding to a fuzzy
state) reflects on global performance [2], since the clas-
sifiers are judged for their performance not only in-
side the niche, but also on the boundaries shared with
neighbor niches. In other terms, fuzzy classifiers are
in competition with each other inside their niche, but
have to cooperate with classifiers belonging to neigh-
bor niches. It is not so for crisp LCS, where competi-
tion is local, and cooperation is not present.

Another interesting implication for learning is the in-
creased granularity that the fuzzy representation in-
duces. Let us consider figure 2, where we represent
the interval (above) and the fuzzy interpretations (be-
low) for data coming from a sonar sensor, mapped on
the c-space of our robot. The c-space is defined by the
two variables: d, the distance from the left wall of the
corridor, and #, the heading of the robot.

Note that, since we consider the corridor as infinite,
only lateral distances, such as d are relevant. From the
dark gray areas of the c-space the robot can only bump
on the wall, due to its limited steering ability. For each
position of the robot in its c-space we have drawn the
interpretation of data coming from the selected sonar
(hatched rectangles in the figure - in general, the com-
plete state is given by hypercubes). We see that each
crisp interpretation is partitioned by the fuzzy one in
many zones. This means that there are real-valued
states that belong to one crisp state, but, at the same
time, to a certain number of fuzzy states (two in the

figure) with the respective degrees of membership. In
other terms, although the number of classes is the same
for both crisp and fuzzy classifications, this last par-
titions the input space in a larger number of distinct
zones (five for each triple of classes in figure 2).

When the agent is in a real-valued state, it matches one
crisp state, but more than one fuzzy states. Thus, the
reinforcement obtained is distributed to a state (or an
action done in a state) in the first case, to a set of states
(actions) in the second case. This means that the in-
formation obtained by the environment is distributed
at each step to classifiers related to many states in the
fuzzy approach. This increases the possibility to eval-
uate actions for real-valued states which can hardly
been reached by the interval representation only. Let
us consider, for instance, the close interval partially
covering the "no return” zone of the c-space marked
in dark gray in figure 2. It covers also a zone that the
animat can leave, but this is very small, and the prob-
ability of visiting it is low, although the animat might
learn interesting actions by going there. The same area
is covered by fuzzy states that extend, with decreas-
ing membership functions, also on the neighborhood.
In the zone where membership functions overlap the
animat movement comes from the composition of the
action proposed by classifiers belonging from different
subpopulations. In a sense, this reduces cluster alias-
ing, since actions done in the overlapping zone are in
general different from actions proposed where there is
no overlapping. Moreover, they are different with a
kind of continuous shift from the action proposed in a
state (e.g., medium in the figure) and that proposed in
the other (e.g., close). Learning also takes into account
the actions done in the overlapping areas, since rein-
forcement is also given because of actions done from
that area. From figure 2, it is possible to imagine that
classifiers operating from the medium state may inter-
act positively with those (possibly highly inaccurate)
operating from the close state in the overlapping area,
possibly keeping the agent out from the "no return”
zone.

Now, let us make some few remarks. Given the above
mentioned phenomenon, it is easy to observe that
fuzzy LCS converge to behaviors that keep the animat
close to the overlapping zones. This means that the
learning algorithms we have introduced tend to opti-
mize the interactions among close states. This may be
a suggestion for the design of membership functions. A
second remark concerns the complexity of the states we
have, even in a simple application as the one we intro-
duce in section 5. For instance, we have six sonars cor-
responding to six patterns analogous to those shown
in figure 2, covering the c-space with many overlap-

ping zones. We have found that, just by fuzzyfying
the intervals as shown in figure 1, the number of the
actual states reachable by our animat rises from 84 to
112, on the same c-space. This reduces cluster alias-
ing, per se, but also gives an idea of the number of the
overlapping zones that may correspond to these fuzzy
states. As a last remark, let us notice that, on the
boundaries between fuzzy states, the contribution of
the obtained reinforcement is mediated by the corre-
sponding membership functions, thus propagating the
smoothing effect, mentioned above with respect to the
actions, also to the learning process.

4 A simple LCS framework

In this paper, we consider a simplified type of LCS [5].
Each classifier is a rule, whose antecedent is the con-
junction of symbolic values for input variables. In crisp
LCS, we consider that each of these symbols denotes
an interval of real input values for the corresponding
variable. In fuzzy LCS, each symbol denotes a fuzzy
subset of the range of the real values the variable can
take. A don’t care symbol may replace any of the an-
tecedent values, meaning that the value of the variable
is not relevant for the classifier, that is that any real
value matches the antecedent. The consequents are
symbols corresponding to crisp values for each of the
consequent variables. A classifier of this kind has a
conceptual shape like this:

IF (FrontDistance IS Close)

AND (LeftDistance IS Far)

AND (RightDistance IS Don_T_Care)
THEN (TurnDirection IS Left)

actually implemented in a more compact string such
as ”7130:3”.

At each control step, one crisp classifier is selected
among the ones whose antecedent is the crisp state
matching the current real-valued state. The conse-
quent values of the selected classifier are sent to the
actuators of the robot.

When operating with fuzzy LCS, a real-valued state
matches different fuzzy states, i.e., different fuzzy clas-
sifiers. We consider subpopulations of classifiers hav-
ing the same antecedent (eventually including don’t
cares) and different consequents. At each control step,
we select one classifier for each matching subpopu-
lation (i.e., one for each fuzzy state). Each of the
matching classifiers proposes an action with a weight
proportional to its degree of matching. We combine
the proposed actions with a fuzzy aggregation opera-
tor [8] (in the experiments here reported, MAX), we

defuzzyly the result [8] (here, by a weighted sum), and
we send the obtained real value to the actuators. No-
tice that the output of crisp classifiers is selected in
a small range of values; for instance, if we have only
one output variable, the output is one of the & values
defined for that variable. The output of fuzzy clas-
sifiers has a far larger range, since it comes from the
weighted combination of the same number of output
values (figure 3): the defuzzylycation process makes it
possible to exploit the information about membership
of the real-valued state to the fuzzy antecedent, thus
producing a fine-grained output. Notice that this is
not a real-valued output, only because the number of
output values depends on the precision considered for
the membership values.

We have implemented a tool [6] to study the impact
on the learning process of different credit assignment
algorithms, exploration strategies, and evolution algo-
rithms. We have done many experiments exploiting
the different choices offered by our tool, and the re-
sults of this extensive study will be presented in other
papers. Here, we present results concerning the pa-
per theme, and obtained by our versions of Q-learning
and T'D(X), both for crisp and fuzzy LCS. These algo-
rithms are described in [6] and we do not present them
here because of space limitations.

5 Experimental results

In this section, we first present the application, then
the experimental settings, and, finally we discuss some
of the results we have obtained.

5.1 The application

The application we have selected is navigation of a
mobile robot in a corridor. The learning activity is
done on a simulated model of the actual mobile robot
CAT [2], which has a car-like kinematics, is 700 mm
long, 600 mm wide, and can run at a maximum speed
of 300 mm/sec both forward and backward. The max-
imum steering degree is 30° on each side, and this is
an important limitation to the maneuvering capabil-
ity. In the configuration we adopted for these exper-
iments, CAT had 8 bumpers (on/off contact sensors)
all around its body, and six sonar sensors, covering
the frontal 210°. Each sonar produces an ultrasonic
wave and the time between emission and detection of
a reflected wave (Time of Flight - ToF) is measured.
This is proportional to the distance from the closer
surface orthogonal to one of the rays of a 60° cone
originating from the sonar. The range is between 200
and 3,230 mm. The distance obtained by each sonar

is affected by noise, uniformly distributed in the inter-
val 5% of the maximum range. This model is rough,
but realistic, and corresponds to a couple of two sen-
sors available on the market, each having a detection
cone of about 30°.

Data from sonars are interpreted either in terms of
fuzzy sets, or in terms of crisp intervals, as described in
figure 1. Notice the special singleton value used to rep-
resent a characteristic feature of sonars: when no echo
returns within the maximum ToF', the sensor gives a
specific out of range value. This happens either when
no object is within the range, or when all the objects
within the range deflect the ultrasonic wave away from
the sensor, due to the relative direction of their sur-
faces. A state is thus represented by six variables, each
corresponding to a distance measured by one sonar
sensor, and one Boolean variable, which becomes true
when any of the bumpers is activated. The only out-
put variable is steering, represented by singletons, as
in figure 3. In the experiments we present here, the
robot goes at a constant speed of 150 mm/sec. When-
ever the robot get stuck on the wall, we bring it three
steps back, so that there is a probability that it comes
in a different sensorial cluster and may try diflerent
actions.

NL NM | NS Z0 PS PM PL

30 20 -10 O 10 20 30 Steering [°]

Figure 3: The output values of steering.

5.2 Experimental settings

Since the aim of these experiments is to discuss the im-
pact of cluster aliasing on the learning performance, we
keep fixed all the learning parameters and procedures
not directly related to this aspect. The exploration
strategy is: take the best matching classifier for each
subpopulation with a probability equal to (N —1)/N,
and a classifier randomly selected with a probability
equal to 1/N. In the experiments here presented,
we excluded generalization, and, with it, the need for
crossover: the classifiers are generated only by cover
detection. The number of classifiers in a subpopulation
matching a state is inversely proportional to the top
performance of the subpopulation: the worst classifiers
matching the current state are deleted when the sub-
population performance increases. Mutation is limited
to the consequent part. The aim of the learning system

is to find the best classifier for each state.

The reinforcement function r is the same in all the
experiments, and it is designed to evolve a controller
that keeps the agent moving as close as possible to the
center of a corridor. In figure 4 we represent it on the
c-space. You can see that it is maximum when the
animat is on the center of the corridor, parallel to the
walls, in any of the two directions, and minimum when
the animat is bumping on the walls. Notice that it does
not take into account the ”no return” zones (in gray in
the c-space). In this paper, we are not concerned with
the optimization of the reinforcement function, and we
only show the results obtained with this reinforcement
function, that we consider to be continuous, since it
can produce a reinforcement for any point in the c-
space, and complete, since it completely describes the
task, giving a reinforcement for any of the values of
the variables in the c-space.

rad

.

o d [;]

1 \

Figure 4. The reinforcement function for the experi-
ments reported in this paper, drawn on the c-space,
along a third dimension coming towards the reader.

Each learning trial lasts 500 control steps, and sets of
trials to be compared with each other have the same
randomization seed. Each experiment consists of tri-
als sequentially starting from the 11 different positions
shown in figure 5, in the there mentioned order; each
sequence is repeated 10 times for a total of 110 trials
and 55,000 control steps. From the set of classifiers
we have at the end of the learning process, we con-
sider only the best classifier for each subpopulation
that have been tested enough, and we evaluate the
performance of the controller they implement in 27
trials, lasting 700 control steps each, starting from the
11 positions shown in figure 5, and from 16 intermedi-
ate ones, in order to test the generality of the learned
controller.

r
6 [radj

3|

! ! ' - ®3 s e
Pk I DN DN
ol el *! log

P 4 >
o d [m]

Figure 5. The starting position for the learning trials,
in the environment (left) and on the c-space (right).

5.3 Results

In this section, we discuss results from experiments
each done as mentioned in section 5.2, since we be-
lieve these are more interesting than results averaged
over a set of similar experiments. Moreover, we have
run experiments for more than 8 millions control steps
and the difference among analogous ones is non sig-
nificant. In figure 6 we show the istantaneous perfor-
mance, over the above mentioned 27 trials, of a learned
controller whose control step lasts 600 ms. As you can
see, the behavior is almost satisfactory for both the
crisp and the fuzzy LCS, although the latter shows a
better behavior, since its performance averaged over
the 27 trials (covering all the reasonable starting po-
sitions) is higher, and it does not bring the animat on
the walls, as it happens in one case (position 8) with
the crisp LCS. This confirms what we have written in
section 3: the fuzzy LCS is more robust with respect
to cluster aliasing.

In figure 7 we show the results of the same experiment,
but with a control step of 100 ms. This is a way to
increase cluster aliasing, since we select, and evaluate,
actions at a higher rate: the probability that, at the
next step, the animat is still in the same state is higher
than in the previous case. In this situation, the next
classifier will be selected from the same subpopulation.
As we can see, the performance of both LCS decreases,
although that of the crisp LCS is still slightly worst
than that of the fuzzy LCS.

The same qualitative comments apply to the results
obtained by adopting T'D()) instead of Q-learning,
whose plots are not reported here because of space lim-
itations. In this application T'D(\) has a slightly worst
performance with respect to Q-learning. This is due
to our continuous reinforcement function, that slows
down learning with 7"D()), since this algorithm suffers
more than Q-learning from the cluster aliasing prob-
lem. A continuous reinforcement function increases
the confusion in the evaluation of the performance in-

R (instantaneous)

R (instantaneous)

Figure 6: Performance of a controller learnt by crisp
(above) and fuzzy (below) Q-learning, control step
600ms.

side a cluster, since the reinforcement is similar for
all the actions taken from close real-valued states, and
quite different from actions taken from far real-valued
states inside the same cluster.

In figure 8, we show the plots of the average reinforce-
ment obtained during learning by Q-learning with con-
trol steps of 600ms and 100ms with the crisp model
(the fuzzy ones are analogous). In both cases, we may
notice that learning reaches a stable point, but we see
that the two are different, due to the higher cluster
aliasing present in the second situation.

6 Conclusions

We have presented some of the problems arising when
applying LCS to real-valued environments. We have
focused on the impact of an interval-based represen-
tation on learning, discussing the problem of cluster
aliasing that arises when more than one action is possi-
ble from one state and action execution does not imply
state change. We have introduced a fuzzy representa-
tion to get closer to a real-valued representation, wile
maintaing a small, symbolic, search space. Finally, we
have discussed the results we have obtained to learn a
relatively simple robotic task: fuzzy LCS seem more
robust than interval-based LCS with respect to the
problem of cluster aliasing, and, at least in the cases
presented in this paper, it seems also more eflective.

R (instantaneous)

R (instantaneous)

Figure 7: Performance of a controller learnt by crisp
(above) and fuzzy (below) Q-learning, control step
100ms.

0 05 1 15 2 25 3 35 4 45 § 65
Step

0 05 1 1 2 25 3 35 4 45 5 &5
xo Step

xio*

Figure 8: Reinforcement during learning: crisp Q-
learning, control step 600ms (left), 100ms (right).

In future papers we will present the impact of other
factors on the learning performance, such as the explo-
ration strategy, generalization, discrete, incomplete, or
accuray-based reinforcement functions. The only con-
sideration we would like to anticipate here is that fuzzy
LCS require, in general, a higher computational effort,
and a higher level of exploration; moreover they work
better with crisp information, such as discrete rein-
forcement functions.

Acknowledgments

This project is partially supported by the Politecnico di Mi-
lano Research Grant ”Development of autonomous agents
through machine learning”, and partially by the project
?CERTAMEN” co-funded by the Italian Ministry of Uni-

versity and Scientific and Technological Research. We are
indebted with Nicolino De Marco who implemented the
first version of the tool supporting this research.

References

[1] A. Bonarini, (1993) ELF: learning incomplete
fuzzy rule sets for an autonomous robot. Proceed-
ings of EUFIT ’93, ELITE Foundation, Aachen,
Germany, 69-75.

[2] A. Bonarini, (1996) Evolutionary Learning of
Fuzzy rules: competition and cooperation. In
Pedrycz, W. (Ed.), Fuzzy Modelling: Paradigms
and Practice, Kluwer Academic Press, Norwell,
MA, 265 - 284.

[3] A.Bonarini, (1997) Anytime learning and adapta-
tion of structured fuzzy behaviors. In M. Mataric
(Ed.) Special issue on ” Complete agent learning in
complex environments”, Adaptive Behavior Jour-
nal, 5(3-4), 281-315.

[4] A. Bonarini, F. Basso, (1997) Learning to co-
ordinate fuzzy behaviors for autonomous agents.
International Journal of Approximate Reasoning,
Special issue on ” Genetic Fuzzy Systems for Con-
trol and Robotics”, F. Herrera (Ed.), 17 (4), 409-
432.

[5] A. Bonarini, (1998) Reinforcement distribution
to fuzzy classifiers: a methodology to extend
crisp algorithms. Proceedings of the IEEE World
Congress on Computational Intelligence (WCCI)
- Bvolutionary Computation, IEEE Computer
Press, Piscataway, NJ, 51-56.

[6] A. Bonarini, (1999) Comparing Reinforcement
Learning Algorithms Applied to Crisp and
Fuzzy Learning Classifier Systems. Proceedings of
GECCO’99, in press.

[7] M. Dorigo, M. Colombetti (1997). Robot shap-
ing: An experiment in behavior engineering. MIT
Press/Bradford, Cambridge, MA.

[8] G. J. Klir, B. Yuan, U. St. Clair (1997) Fuzzy
set theory: foundations and applicatons, Prentice-
Hall, Englewood Cliffs, MA.

[9] Whitehead S.D., Ballard D.H. (1991). Learning
to perceive and act by trial and error. Machine
Learning, 7, 45-83.

[10] S. W. Wilson, (1995). Classifier fitness based on
accuracy. Evolutionary computation, 3(2), 149-
175.

