Learning context motivation
in coordinated behaviors

Andrea Bonarini, Matteo Matteucci *

Abstract. We present a novel architecture to implement fuzzy behav-
iors for autonomous robots and an approach to adapt them to a dy-
namical environment, in real-time. We adopt the system that we have
implemented in different applications such as robotic soccer (Robocup),
document delivery in office environments, and surveillance.

Keywords. Behavior-based Robotics, Reinforcement Learning, Fuzzy Sys-
tems.

1 Introduction

We propose a novel behavior architecture, based upon fuzzy models to implement re-
active autonomous agents that execute real-time tasks in dynamic environments. We
propose fuzzy models to face the issue of uncertain perception; a fuzzy model imple-
ments a classification of the available information and knowledge in terms of fuzzy
predicates, which have been demonstrated to be a powerful and robust representation
paradigm [9][13].

Facing real-time tasks in dynamic environments, we have to overcome the time
constrains deriving from a purely symbolic planning using a reactive approach based on
the interaction of several simple specialized behaviors, performing local reasoning. We
associate to reactive behaviors a context evaluation mechanism to tune the behaviors
to specific situations.

The main purpose of this paper is to present a behavior architecture suitable for
learning coordinated behaviors. We also describe an approach to learn context driven
coordination among basic behaviors. We have designed such an architecture to accom-
plish the learning needs. In our learning oriented behavior architecture, a behavior
module is associated with two sets of fuzzy predicates: the CANDQO enabling precon-
ditions and the WANT context conditions. The truth values of CANDO predicates
enable the execution of the associated behavior and the truth values of WANT pred-
icates weight the actions proposed by the behavior module considering the activation
context. The output of the behavior modules are actions to be executed by the robot’s
physical actuators or messages to be sent to other agents.

We adopt this architecture on different robots involved in a wide variety of tasks,
such as: soccer playing in Robocup [2], document delivery in an office environment,
and surveillance.

We believe that learning may support the development and adaptation of robotic
agents. In particular, we treat in the second part of this paper aspects related to

*This research has been partially supported by the MURST Project CERTAMEN. The authors are
with the AT and Robotics Project, Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy - E-mail: {bonarini, matteucc}@elet.polimi.it

Agent

Behavior M System
(rofcstosk——{ _eummytier 4 Memenger o
[Want]| [cando] | || oetursymer |1 out|
I

£

Behaviour
Engine

¢:$ World
Planner Modeler

Figure 1: The agent architecture

adaptation in a short time to new environments by tuning the context predicates as-
sociated to coded (or previously learned) basic behaviors. We present an approach to
this task which is feasible also in applications such as those mentioned above, where
the environment is dynamic and subject to drastic changes.

2 Behavior architecture

Our overall architecture (see figure 1) consists of a behavior management system inter-
faced with other subsystems such as: a world modeler and a planner. The former main-
tains a model of the world interfacing with the available sensors and other, eventually
present, collaborating agents; its main functions are sensor fusion and self-localization.
The planner states the goals for the agent, implementing an abstract, global reasoning:
the obtained plan includes information useful to evaluate the actual context. In figure
the actuation module is not included; it is in charge of realizing the commands issued
by the behavior manager by interfacing the agent with the environment. In this paper,
we focus only on the behavior management system shown in details in figure 2.

The characterizing aspects of the behavior management system are the input in-
terface based on fuzzy predicates and the possibility to enable or inhibit behavior
modules and to graduate their proposed output. Fuzzy predicates are a general and
robust [9] modeling paradigm, close to the designer’s mental models [18]. Other re-
searchers [13][10] have adopted them to implement control systems for autonomous
robots for analogous reasons. Fuzzy predicates may represent aspects of the world,
goals, and information coming from other agents. Their general shape consists of a
fuzzy variable name, a label corresponding to a fuzzy set defined on the range of the
variable, a degree of matching of the corresponding data to the mentioned fuzzy set,
and a reliability value to take into account the quality of the data source. For instance,
we may have a predicate represented as

< BallDistance, VeryClose,0.8,0.9 >

which can be expressed in natural language as: ”the ball is considered very close, with
a truth value of 0.8 (coming from the fuzzyfication of the incoming data, namely the
real-valued distance from the ball), and a reliability value of 0.9, qualifying the data as
highly reliable.

We consider ground and complex fuzzy predicates. Ground fuzzy predicates range
on data available to the agent, and have a truth value corresponding to the degree

Algorithm

: Cando

enabling conditions

Want

sareoipaid

Behaviour Engine

reward

B SR

suojoe

Composer
weigths [Behaviour — [comman ds

Weighting

Figure 2: The behaviour management system

of membership of the incoming data to a labeled fuzzy set. This is equivalent to
classify the incoming data into categories defined by the fuzzy sets, and to assign to this
classification a weight between 0 and 1. Fuzzy ground predicates are defined on: sensing,
present goals, or messages coming from other agents; the reliability of data is provided,
respectively, by the world modeler (basing on local considerations), the planner stating
the goals, and a special purpose module that computes the reliability from the other
agent’s reliability and the reliability it has associated with data in its message. For
instance, in Robocup, teammates provide their position on the playground, together
with the estimation of the quality (reliability) of their present self-localization. This
information is matched against the internal model the agent has of the situation, and
this provides another contribution to data reliability. Moreover, the agent maintains
information about the reliability of its teammates. All this reliability information is
composed to update the internal model.

A complex fuzzy predicate is a composition (obtained by fuzzy logic operators) of
fuzzy predicates. Complex fuzzy predicates extend the basic information contained
in ground predicates into a more abstract model. In RoboCup, for instance, we can
model the concept of ball possession by the HaveBall predicate, joining by the AND
operator the predicates < BallDistance, VeryClose >, ground predicate deriving from
the fuzzyfication of the ball distance perception, and < Ball Direction, Front >, ground
predicate deriving from the fuzzyfication of the perception of ball direction.

We define for each behavior module a set of predicates that enable its activation:
the CANDQO preconditions. The designer has to put in this set all the conditions which
have to be true, at least to a significant extent, to give sense to the behavior activation.
For instance, in order to consider to kick a ball into the opponent goal, the agent should
have the ball control. It is quite easy for the designer to define such sets of predicates,
and we do not consider useful to learn them.

Another set of fuzzy predicates is associated to each behavior module: the WANT
context conditions. These are predicates that represent the motivation for the agent
to activate a behavior in relation with a context. They may come either from the
environmental context (e.g., “there is an opponent in front of me”), or from internal
goals (e.g., “I have to score a goal”), or from information directly coming from other
agents(e.g., “I'm taking care of the ball”). All these predicates are composed by fuzzy
operators, and contribute to compute a motivational state for each behavior. So the

agent knows that it could play a set of behaviors (those enabled by the CANDO pre-
conditions), but it has to select among them the behaviors consistent with its present
motivations. If more than one behavior is in this condition, the actions proposed by
the selected behaviors are composed with the weights computed by each behavior. This
is coherent with some early work on this topic [1] [13] [10], although we expect that,
in the large majority of situations, a single behavior will be activated at a time, since
the composition of different behaviors is usually less effective. This is achieved through
a specialization of the context model for each behavior. We have decided to spend
on-line computational resources to learn the relationship between the WANT context
conditions and the behaviors, as described in the next section.

With respect to the Brooks’s [7] behavior architecture we introduce many differences;
our behaviors management system works on fuzzy predicates obtaining the capability of
coordinating the concurrent execution of several behaviors. We consider the adoption
of CANDO and WANT predicates as an alternative choice to the implementation of
the subsumption architecture. It is more general than Brook’s proposal and also more
effective in strongly dynamic environments. In our implementation the enabling connec-
tions among behaviors are context dependent (using the WANT conditions), so, in our
architecture, relationships among behaviors are not rigidly defined, but we can adapt
the emerging global behavior, depending also on external conditions and motivations.

Another reference we have considered is Arkin’s schema-based behavior architec-
ture [1]. It is possible to map the basic principles of our and Arkin’s approaches into
each other. The main difference is the fuzzy model we put at the basis of our architec-
ture, whereas the same concepts are represented by Arkin with different tools such as
a gain value to weight each behavior contribution, or their representation in terms of
potential fields. A fuzzy model provides a powerful and more uniform representation of
analogous features. A difference between our architecture and both Brooks’ and Arkin’s
is the presence in ours of a world modeler that interfaces the external world with the
behavior module. In the mentioned architectures, world modeling is embedded in each
behavior definition. We have implemented such a module to achieve efficiency and to
provide a unified interface from the environment to the behaviors.

In our architecture we start from Saffiotti’s approach [13][10]to the use of fuzzy logic
in robotics [12], which tries to face the problem of designing an effective controller for
mobile robots by combining goal-specific strategies by resolution of conflicts between
multiple objectives. We keep separate the CANDO from the WANT conditions, due to
they different semantics, while in [13] they are put together in the desirability parameter.

3 Learning and adaptation

In this paper we also present an algorithm belonging to the anytime learning [8] class
of algorithms, able to provide a result at anytime during its activity. This is important
when the robotic agent has to learn while performing. In our case we use this algorithm
to adapt the motivations of the agent to a dynamic environment. At the beginning, the
agent interacts with the environment by selecting behaviors with the motivation model
already learnt till that moment. As it verifies its effectiveness it may modify the model
to try to improve its performance.

We adopt a reinforcement learning [16] schema. When the agent has to select a
behavior, we consider the set of all the behaviors whose CANDO preconditions match
the situation above a given threshold (Triggerable Behavior Set - TBS), and the set
of predicates which match the situation. Some of them already contribute to the mo-

tivations of the behaviors in TBS, the others may become part of them. We add to
the motivations some of the predicates not yet included. We select these predicates by
considering the trade off between exploration and exploitation, the degree of match-
ing of the candidate predicates, and their reliability. We combine the proposed actions
weighting them by the corresponding motivation value. Usually, the so-produced action
modifies the environment, or, at least, its perception by the agent. If the modification is
relevant, it is evaluated by a reinforcement function. The relevance of the reached situ-
ation depends on the application and is defined a priori together with the reinforcement
function. For instance, in the Robocup environment, we take as relevant events such
as: ball possession change, goal scoring, and fouls. It is important to have reinforce-
ment at a frequency that enables to have enough information from the environment
(too scarce reinforcement negatively affects adaptation) and to allow enough time to
evaluate a set of behavior motivations. For instance, if we had reinforcement at each
control step, probably we cannot filter out drops in reinforcement due to accidental
causes. This principle has been deeply discussed in [3][4]. We keep the same set of
WANT conditions for a behavior until the sum of their matching degrees in the past
does not exceed a given threshold which is an estimation of the exploitation needed
to reliably evaluate the set of conditions. The obtained reinforcement is distributed to
the relationship between the set of the current motivation predicates and the triggered
behavior, according to the formula:

Vi(p,b) = Veer () + €(re = Veer (p, 1))

where V;(p,b) is the value of the relationship between the set of predicates p and the
behavior b at time ¢, « is the learning rate, r; is the reinforcement at time ¢ and &
gives account of the fuzzyness of the model. It is proportional to the conjunction of the
matching degrees of the involved predicates, computed by a T-norm [9] such as min.
This means that the contribution coming from the current reinforcement is proportional
to the degree of matching of the selected predicates. By modulating o, we can tune the
system to adapt to frequent changes (high), or to learn more foundational aspects (low
«). This choice is done off-line, by considering the dynamics of the environment and the
time available to learn new models. For instance, in the Robocup application we keep
« high, since we do not have much learning time (6000 steps for 10 minutes); moreover
the actions where the agent is involved do not span on all the available time, and we
focus on the identification of the best overall behavior for a given team and match. In
the surveillance task, the agent has to adapt the behavior to a new environment which
is supposed to remain the same for the rest of the operation, so « can be high. In
the document delivery task, the agent has to adapt to the presence of different persons
working in the same environment, which may interact with the agent in different ways.
So we have to filter out these too fast changes, and learn only the basic aspects with a
low .

Apart from the £ term, the reinforcement distribution formula is classical. We share
with other researchers [14] the opinion that this formula is better than more common
formulas in reinforcement learning, which consider also a term taking into account the
expected future reinforcement, such as, for instance, @Q-learning [17] or TD()) [15].
Our choice makes sense in environments, like those we are considering, where future
reinforcement depends in large part from actions done by other agents, which give high
variability.

The highest-valued motivation set is always kept for each behavior and it is com-
pared with each new motivation set as this is considered to have been enough tested.

When the comparison is done, if the new motivation is higher-valued, it is kept, and
the adaptation process continues from it, otherwise, new possibilities are explored from
the old WANT conditions set. When a motivation set becomes too large, it is reduced
by dropping a condition among those which induced the smallest increment in perfor-
mance when they where introduced. The new motivation set is tested and evaluated as
any other.

From what reported above it is possible to understand how, by manipulating on-line
the context predicates for each behavior module, it is possible to adapt the cooperation
among them to the needs of a specific environment. Moreover, since we include in the
predicates also information about other agents, this is also a mechanism to adapt a co-
operative behavior among different agents, as we are doing in Robocup, and we plan to
do in the other mentioned tasks. Notice that this model may support agent cooperation
based either on explicit communication (we interpret messages as predicates), or on im-
plicit communication obtained by observing and producing actions in the environment.
We are experimenting both the approaches with the same architecture introduced in
this paper.

4 Experimental results

Here, we present results obtained in simulation in the Robocup environment. Simula-
tion is a key approach in this application, since it gives the possibility to design and
implement in a short time behaviors and mechanical features of opponents, making it
possible to perform many different trials before playing matches against real opponents.
Thus, it is also possible to identify a number of different initial configurations for the
behavior system, to be used as a starting point for the actual matches.

We are involved in the F-2000 Robocup league [2] with the Italian National Team
(ART - Azzurra Robot Team [11]), with our player Rullit [6]. We have implemented
a simulator for F-2000 robots enough detailed to be a realistic tool to test strategic
aspects of the game. In particular, we may attach to the simulator the same control
modules implemented for the actual robot and test their behavior without needing to
have two teams actually present on a real field. This makes it possible to perform
realistic experiments also before the real competitions.

In the experiments about adaptation that we present here, we had the goal to adapt
the control system for one player of a team that have to effectively face other teams
showing predefined, canonical behaviors, similar to those seen on the field during the
last World Championship. This is a realistic situation, since we will probably put on the
field only one player with the ART national team, and we will have to interact with the
teammates that do not have any adaptation facility on board. We have implemented
strategies for the opponents such as: “play on zone”, where each robot actively operates
only in a predefined zone of the field and roles are defined by the assigned zone, and “all
on the ball”, where all the robots tend to go on the ball, thus creating a sort of barrier
around it. Every 100 msec the control system takes information from the environment
and computes the action to be done. The duration of the match is 20 minutes, divided
in two half times. We have fed our robot with the control system adopted for Rullit
in the last World Championship, and let the above described adaptation algorithm to
work.

The reinforcement function gives a positive reinforcement when our team gain the
possess of the ball and when we score a goal. A negative reinforcement is given when
the opponents gain the ball and score a goal, and also when the adapting agent makes

SORED GOALS

~~~~~~~~~~

Figure 3: The performance of the team with an adapted agent

a foul. All the reinforcement values are multiplied by a given factor £ in [0, 5], when
the adapting agent is directly involved in the corresponding action. We have performed
many experiments, varying 3, «, and the strategies of both teams. In all the experiments
we have obtained interesting modifications of the original behavior, with a significant
improvement in performance, for the whole team, thus demonstrating that, even with
only one adapting agent in a team, the global performance increases. As an example,
in figure 3 we show the number of goals scored by our team after the adaptation of
Rullit with @ = 0.1, 8 = 5, and both the teams following the “all on the ball” strategy.
The plot shows results averaged over 12 different experiments. The test trial for each
experiment is done for 20000 simulation steps (about half a hour game). The lower plot
is the performance of the team without adapting agents, the higher one contains the
adapted Rullit. The quality of results is evident.

5 Conclusion

We have presented in this paper a behavioral architecture for an autonomous robot
based on a fuzzy model. It has been designed to make it possible the interaction among
different behavior modules, and to put in evidence aspects that can be learnt. In
particular, we are presently adopting it in different environments, for different tasks,
adapting the behavior of single or cooperating robots to dynamical environments in real
time. We operate on-line on the fuzzy predicates that implement the context model
for each behavior activation, which provide the agent with a motivation to activate
the behavior itself. The fuzzy model gives robustness to the system with respect to
imprecision in data acquisition and uncertainty. Moreover, it enables smooth transitions
between different behaviors, a property highly desirable in learning and adaptation [5).
The presented adaptation algorithm can be considered an anytime algorithm, since at
any moment it provides a sub-optimal solution to the problem, and the best solution
so far found can be retrieved at any time. We have demonstrated in simulation its
effectiveness in hard tasks such as Robocup.

References

[1] R. C. Arkin. Behavior-Based Robotics. MIT Press, Cambridge, MA, 1998.



2]
[3]

[4]

[5]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]
[18]

M. Asada, H. Kitano, I. Noda, and M. Veloso. Robocup: today and tomorrow —
what we have learned. Artificial Intelligence Journal, 110:193-214, 1999.

A. Bonarini. Evolutionary learning of fuzzy rules: competition and cooperation.
In W. Pedrycz, editor, Fuzzy Modelling: Paradigms and Practice, pages 265-284.
Kluwer Academic Press, Norwell, MA, 1996.

A. Bonarini. Anytime learning and adaptation of hierarchical fuzzy logic behaviors.
Adaptive Behavior Journal, 5(3-4):281-315, 1997.

A. Bonarini. Reinforcement distribution to fuzzy classifiers: a methodology to
extend crisp algorithms. In IFEE International Conference on Evolutionary Com-
putation — WCCI-ICEC’98, volume 1, pages 51-56, Piscataway, NJ, 1998. IEEE
Computer Press.

A. Bonarini. The body, the mind or the eye, first? In Proceedings of the Third
International Workshop on Robocup (Robocup99), pages 40-45, Cambridge, MA,
1999. IJCAI Press.

R. A. Brooks. A robust layered control system for a mobile robot. IEFE Journal
of Robot Automation, 2(1), 1986.

J. J. Grefenstette and J. Ramsey. An approach to anytime learning. In D. Sleeman
and P. Edwards, editors, Proceedings of the Ninth International Conference on
Machine Learning, pages 189-195, San Mateo, CA, 1992. Morgan Kaufmann.

G. J. Klir, B. Yuan, and U. St. Clair. Fuzzy set theory: foundations and applicatons.
Prentice-Hall, Upper Saddle River, NY, 1997.

K. Konolige, K. Myers, E. Ruspini, and A. Saffiotti. The saphira architecture: A
design for autonomy. Journal of Ezperimental and Theoretical Artificial Intelli-
gence, 9(1):215-235, 1997.

D. Nardi, G. Adorni, A. Bonarini, A. Chella, G. Clemente, E. Pagello, and M. Pi-

aggio. Art — azzurra robot team. In M. Asada M. Veloso, E. Pagello, editor,
RoboClup 98-Robot Soccer World Cup I1I, Berlin, D, 2000. Springer Verlag.

A. Saffiotti. The uses of fuzzy logic in autonomous robot navigation. Soft Com-
puting, 1(1):180-197, 1997.

A. Saffiotti, K. Konolige, and E. H. Ruspini. A multivalued-logic approach to
integrating planning and control. Artificial Intelligence Journal, 76(1-2):481-526,
1995.

P. Stone and M. Veloso. Tpot-rl: Team-partitioned, opaque-transition reinforce-
ment learning. In M. Asada, editor, RoboCup 98: Robot Soccer World Cup II,
pages 221 — 236, Berlin, D, 1998. Springer Verlag.

R. S. Sutton. Learning to predict by the method of temporal differences. Machine
Learning, 3(1):9-44, 1988.

R. S. Sutton and A. G. Barto. Reinforcement Learning An Introduction. MIT
Press, Cambridge, Massachusetts, 1999.

C. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279-292, 1992.

L. A. Zadeh. Making computer think like people. IEEE Spectrum, pages 26-32,
1984.



