An approach to the design of
reinforcement tunctions in real world,
agent-based applications

Andrea Bonarini, Claudio Bonacina, Matteo Matteucci

Abstract— The success of any reinforcement learning (RL)
application is in large part due to the design of an appropri-
ate reinforcement function. A methodological framework to
support the design of reinforcement functions has not been
defined yet, and this critical and often underestimated ac-
tivity is left to the ability of the RL application designer.
‘We propose an approach to support reinforcement function
design in RL applications concerning learning behaviors for
autonomous agents. We define some dimensions along which
we can describe reinforcement functions; we consider the
distribution of reinforcement values, their coherence and
their matching with the designer’s perspective. We give
hints to define measures that objectively describe the rein-
forcement function; we discuss the trade-offs that should be
considered to improve learning and we introduce the dimen-
sions along which this improvement can be expected. The
approach we are presenting is general enough to be adopted
in a large number of RL projects. We show how to apply
it in the design of Learning Classifier Systems (LCS) ap-
plications. We consider a simple, but quite complete case
study in evolutionary robotics, and we discuss reinforcement
function design issues in this sample context.

I. INTRODUCTION

The interaction of an autonomous agent with the envi-
ronment is its major source of knowledge. One of the most
interesting computational approaches to increase knowl-
edge while interacting with the environment is reinforce-
ment learning (RL) [1], [2]. In this paper, we present an
approach to design and evaluate reinforcement functions
used by RL algorithms to produce control systems for real-
world and simulated, robotic, autonomous agents.

In RL, an agent operates in an environment by per-
forming actions and receives from the environment data
that describe, maybe only partially, the state of the agent-
environment system. A subset of these data is considered
as input to the control system (control input or I€) of the
agent which, on the basis of this perception, produces the
next action to be sent to the actuators. Another subset of
the data (reinforcement input or I®) perceived from the en-
vironment, maybe partially overlapping with the first, can
be used by a RL system to evaluate the performance of
the agent. Using these data, the RL algorithm may mod-
ify the control system to improve the agent’s performance.
Reinforcement is computed from the reinforcement input
by means of a reinforcement function (more generally a
reinforcement program). The aim of the learning system
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Fig. 1. A schema of the agent-environment system

is to improve the controller so as to maximize some func-
tion of the reinforcement, e.g., its instantaneous value, or
the expected sum of its values, or its average. Usually, to
reduce the search space, the real-valued (or fine-grained)
input variables are discretized in a small number of inter-
vals. Our approach supports the definition and the analysis
of reinforcement functions in this situation. In figure 1, we
show a schematic view of the components of the described
system.

The primary role of the reinforcement function is to pro-
vide the RL algorithm with enough and correct informa-
tion about the task to be learned and the performance of
the agent. The designer should define the reinforcement
function by considering knowledge about the task that he
wishes the agent to learn. Translating the designer knowl-
edge from natural language to a formal model, which is
usually represented by a mathematical formalism, can be
a complex task. Our approach supports it. We suggest
linking all the design aspects to an objective model of the
agent-environment system.

In most of the applications reported in the RL litera-
ture, it seems that the reinforcement function design is
approached by trial and error: a good designer sooner or
later comes to the definition of a reinforcement function
that makes the learning system obtain a controller for the
agent that matches the specifications. We propose an ap-
proach to design reinforcement functions in an engineering
perspective considering the configuration space of the agent
(CbD - c-space based Design).

Although for some algorithms (Q-learning [3], TD(A) [4])
there is a proof of convergence (at least under some assump-
tions), the performance of RL algorithms strongly depends



on aspects (such as the definition of the reinforcement func-
tion), that are usually underestimated. Here, we present an
analysis of the implications of some reinforcement function
features on the learning process.

In the next section, we introduce a formalism to describe
the agent-environment system from a learning point of
view, and a formal description of the goals to be learned. In
section IIT we consider design problems and reinforcement
function features discussing their influence on the learning
activity. We present our solution to some open problems
in section IV. Then, we will show the application of our
approach to a particular class of RL algorithms: learning
classifier systems [5] [6]. We will also discuss the relation-
ship between perception and reinforcement function design,
and we report the results of our experiments in section V.
Throughout the paper we will give examples concerning a
classical application (a mobile robot navigating in an un-
known environment), which we have designed to highlight
most of the aspects that may characterize reinforcement
learning experiments.

II. THE AGENT-ENVIRONMENT SYSTEM

In this section, we define all the elements of the agent-
environment system (see figure 1). The modules composing
this system are dynamic systems, so they depend on time
t; some of them change their output at discrete time points
T, when particular events occur. We consider the sequence
of time points 7 as a second time line overlapping with
the primary time line ¢. We use the notation 7 < % to
express that a particular instant 7 in time line 7 is strictly
before t in ¢; T < t means that 7 is before or equal to

_ _=

t. Byt we represent the set of time points previous or
_ = -

contemporaneous to t; t can be read as “until instant ¢,

and I as “before instant 7.

We consider the control program as a function depending
on a set of parameters which may be updated by the learn-
ing system. The control system C uses the control input
1€ (tj) to generate the action A(t,7) sent to the actuators
to be executed. Here, t represents the control time and 7
the time when the control parameters P(7) are updated
by the learning system. For instance, vector P may repre-
sent the parameters of a PID controller [7], the weights of
a neural network [8], or the Q-table in a Q-learning algo-
rithm [3].

During learning, function C' depends on vector P(7) so
that A(t,7) is defined as:

At,7) = CAC(E);P(r)) 7=t (1)

where the action depends on the IC values collected until
the present time, and the last control parameters produced
by the RL algorithm. An agent using this kind of control
program is classified as dynamic [9], since at time ¢ it uses
internal states as a memory of IC(¢).

To define a purely reactive agent we have to consider a
different formulation for A(¢,7):

Alt,7) = CAC(;P(1)) 7=t 2)

where the control action is decided considering only the
present 1€ (¢).

The learning algorithm L is a function that updates the
P vector when particular events occur; this function may
consider some of the previous values of P and the reinforce-
ment value r(7) generated by the trainer

<

P(r) = L(P(r );r(7)) 3)

The reinforcement function 7' generates r(7) at time 7.
This function, in its most general form, ranges on reinforce-
ment input TR (¢¥), with ¢ < 7, and the actions A(t™,7—1)
performed by the agent before time #:
() =T A, 7-1) ¢t ()
In formulae 1, 2, 4 we use vectors I€ and I® to define re-
spectively the input to the control system and the trainer.
These vectors represent the perception of the environment
for the agent and the trainer; they are generated by the
associated sensing and interpretation systems, respectively
SC and S®R. We consider each of these systems as a set
of functions SF(t) that at time ¢ produce the input IF

from data Ok(tj), observed from the environment until
that time, and each concerning a specific feature.

IE (1) = SE(0° (7))

k3

7| = m, ()

I7(t) = SFOR(t))

where m and n are respectively the cardinality of IiC and
R,

Notice that, in general, S¥ provide an interpretation
model of data (e.g., their discretization), and O¥(t) come
from a stochastic process implemented by physical sensors
interfaced to the environment. This means that the input
to our system may be different from the same data observed
by another system (for instance, the designer) by another
sensorial apparatus. This difference may produce problems
that we discuss in section III-D.

After the learning process is terminated, the behavior of
the agent is defined by a control program C, whose vector
P is fixed:

I =n, (6)

At)=CAC(E)P)  P=P@E)AF=<D. (7)

We denote a generic sequence of actions implemented by
CasC".

Considering the agent-environment system, this is com-
pletely determined from the physical point of view by the
set of its free physical variables V. A configuration c is a
tuple of values for all the variables in V, and C is the set
of all the possible configurations of the system. The space
C is known as the configuration space, or c-space [10] and
it is used in robotics for several issues like, for example,
the definition of the kinematic model of a robot. It is de-
scribed by independent variables and physical constraints
on their values; thus, it is an objective description of the
agent-environment system.



We call the set of goal configurations G. It is a subset of

C:
gcc. (8)

The agent should learn a goal behavior GOAL that may
belong to different typologies (achieve, maintain, avoid) or
a combination of these (e.g., achieve and maintain):

avoid G
GOAL = {achieve g (9)
maintain G
These typologies are defined as
GOAL achieve : Veo € C,AGE€G : ¢oC™ §, (10)

i.e., for any starting configuration, applying the con-
trol relation an undefined number of times, the agent-
environment system reaches one of the goal configurations;

(11)

i.e., starting from any of the goal configurations, apply-
ing once the control relation the agent-environment system
goes to a goal configuration;

GOAL maintain : ¥Ygo € G,3G€G: goCg,

GOAL avoid: Yeco € C,35€G: coCTg, (12)
i.e., starting from any configuration and applying the con-
trol relation an undefined number of times, the agent does
not reach any goal configuration. The avoid goal type could
in principle be derived from the achieve by complementa-
tion of the argument, but it is more natural to define it in
this way.

Notice that in many applications not all the configura-
tions belong to G, so we may want first achieve (or avoid)
a goal configuration, and then maintain the system in the
desired situation.

The definitions given above are ideal and in many real
cases they should be relaxed, to enable the RL algorithm
to produce the desired results. We propose two types of
relaxation for both achieve and maintain goal types. The
first achieve relaxation allows the goal configuration to be
achieved from a subset C' of the configuration space, in-
stead of from the whole C.

GOAL achieve: 3IC' CC,Vc¢ye (',

3G€G: ¢ C™§. (13)
The second type of achieve relaxation allows to achieve a
configuration in a bounded neighborhood of a goal config-
uration.

GOAL achieve: Ve¢y€C,3ge€ G,3¢e€C:

wCT&A ||§—E|<N.  (14)

Also for the maintain goal type we can relax the generality
of the control program by:

GOAL maintain: 3G' CG,Vgo € G,

39€G:9Cg, (15)

and its accuracy by giving the possibility of leaving the
goal configuration for a finite number of control steps N:
GOAL maintain: Vgo € G,23g€G: ggCNg.  (16)
These definitions concern only simple attitudes towards
goal configurations, and have to be extended to take into
account goal behaviors involving temporal relationships
with goal configurations, such as: achieving a set of con-
figurations in a given sequence (e.g., “first push the green
button, then the red one”), achieving a set of configurations
if a particular event occurred in the past (e.g., “reward cof-
fee distribution only if it was requested” [11]), alternating
achieving and avoiding (“go to the light, but, when there
is a sound, escape from it” [12]). In this paper we focus on
simple atemporal attitudes; a complete treatment of goal
definition is left to future work.

I1I. DESIGN PROBLEMS

In this section, we present some of the reinforcement
function design issues. We first discuss problems related
to the different perception of the state of the agent—
environment system that the designer, the trainer, and the
agent itself may have. Then, we discuss the possibility to
define reinforcement functions that are able to represent
all the features of the desired behavior. This is followed
by a discussion about temporal reinforcement distribution.
All these issues raise the need for a careful design of data
acquisition systems and of the reinforcement function. In
this paper we focus only on this last aspect, presenting our
approach in section IV and its application in section V.
Data acquisition and interpretation issues will be treated
in details in a forthcoming paper.

Let us now start with the presentation of open problems.

A. The designer

Let us consider that the designer has clearly in mind
what the agent should learn, so that natural language spec-
ifications are available. We call O® the data that can be
objectively observed by a person looking at the perform-
ing agent, and that are considered in the natural language
specifications. Although in principle it would be possible
to have a human trainer providing reinforcement, this is
not usual nor practical. In most applications the learning
system perceives the reinforcement input from the envi-
ronment, via the sensorial interface S®. Then, it computes
the reinforcement without any human intervention via the
reinforcement function. The main problem with the defini-
tion of the reinforcement function is that it has to derived
from data available during the learning trials (O®), which
are different from O©. This difference is the first relevant
aspect of the designer problem; also when data are concep-
tually the same (e.g., a distance from a given object, or a
color) the different nature of the sensors provide different
perceptions.

The first activity that the designer should face is to de-
fine a relationship between the original natural language
specification, which considers OC, and the reinforcement



Fig. 2. A robotic agent close to a wall, but not perceiving it. The
light gray cones represent the sonar wave.

function, which should consider the only input available to
the trainer OR,

Let us introduce a simple example where a mobile robot
should learn “to navigate in the middle of a corridor”. The
RL designer may decide to give a positive reinforcement to
the agent when it is moving in the middle of the corridor.
To implement this kind of reinforcement function we may
put sensors on the robot that can perceive the distance
from both the walls, thus making O® matching O°, or,
more realistically, making I® matching IC, where I© is the
conceptual input to the observer, coming from its sensorial
apparatus.

If we cannot modify physical aspects of the robot, we
have to relate the task description with the available data.
Let us consider that the agent can measure distances from
objects in a 120 degrees range on the front of the robot, us-
ing a set of sonar sensors that produce O®. In this case, we
may decide to give positive reinforcement when the agent
does not perceive anything from its frontal sensors, which
is a situation related with the original specifications when
the corridor width is smaller than twice the sensor range.
However, this may still introduce ambiguity. In a situation
like the one shown in figure 2, the sensors cannot detect
anything in front of the agent although it is very close to
a wall, since the relative orientation between the sensor
and the wall does not make any reflected ultrasonic wave
that bounce back to the sensor. This problem of ambi-
guity arises from a mismatch between the desired feature
(a distance in a given direction) and the available sensors.
This type of problems can be easily solved when working
in simulated environments but they are more problematic
in real environments.

B. The Trainer

The next aspect to take into consideration concerns the
trainer (see figure 1). The trainer, using I®, computes
the reinforcement signal r via a reinforcement function 7'.
The learning algorithm uses this signal to evolve a map-
ping from the control input I€ to the action A. Let us
consider that the information provided by I€ is sufficient
to implement the task. If it is not, the control input should

be redefined, or the task definition modified to match the
available information.

The different perception of the environment by the
trainer and the control system can be classified according
to the differences between I€ and I®. We have two classes
of trainers: if I® = IC the trainer is internal, otherwise it
is external [9].

B.1 Internal trainer
IC is often used as I® due to two main motivations:
o availability: if the only interface with the environment
is provided by OC, then we can exploit all the available
information in the reinforcement function by considering
OR =0C and IR =1I€
o speed up: considering I€ = IR (and SR = S€) may speed
up and improve the learning process since the agent has not
to find out the relationship between the input used to re-
inforce it (I®) and that used to control it (IC). Learning
this relationship is needed as appears evident by substitut-
ing the expression of r(7) from equation (4) in equation
(3) and the so obtained value of P(7) in equation (2) (or
in (1)), obtaining that
A=C®I%IR). (17)
This means that A depends on the values of I® during the
learning trials, and that this leaves a trace on the learned
controller.
Usually, learning the relationship between IC€ and I® is
not considered an issue. Given that it may require com-
putational resources and affect the quality of the learning
process, we think it is worth being aware of it. We will
see in section IV how to take it into consideration, and
in section V what may happen if we do not consider this
issue. We better clarify that we do not consider learning
the relationship between I€ and I® as a different learning
process rather as an implicit mapping process due to the
differences between I€ and I®R.
The reinforcement function design considering IR = IC
may present some problems:
o abstraction mismatch: I€ may be at a too low abstrac-
tion level with respect to the designer’s original natural
language specifications
o lack of information: IC€ may not provide enough infor-
mation to the designer, so that it becomes hard to define
the task solely with this information [12] [9].

B.2 External trainer

The main motivation to select I® # I€ concerns the
possible low representation power of IC; we may want I®
different from IC to represent some features not directly
derivable from this [9]. This makes easier to represent the
designer’s expectations, although the agent should learn
also the relationship between I® and I€, as mentioned
above.

This approach has some advantages, but introduces some
issues, too:



o relationship between I’ and I€: the agent has to learn
the relationship between I® and I€, and this may not exist,
or it may be too difficult to be learned

o aliasing: the presence of aliasing may make harder the
learning process (see section III-D).

C. Immediate and delayed reinforcement

Immediate reinforcement can be provided after the exe-
cution of each action if it is possible to define a reinforce-
ment function to estimate how much each single action in a
given situation contributes to reach the goal. This means
that 7 = t in equation (4) and that the goal configura-
tion set G is extended to the whole configuration set C.
In this case the reinforcement function is a metric to esti-
mate how each action contributes to the accomplishment
of the task. Such kind of reinforcement functions provide
a lot of information and, when available, they seem more
appealing than those providing reinforcement only in spe-
cific situations (delayed reinforcement), where 7 # t and
G C C. However, immediate reinforcement may also intro-
duce some problems. These reinforcement functions often
include a lot of a priori knowledge [13] which in principle
could bias the learning process in undesired and non op-
timal directions. In [13] and [14] the author recognizes
this problem but underlines how it is important to provide
continuous reinforcement (progress estimator) to speed up
the learning process.

A typical problem with delayed reinforcement is its dis-
tribution over the configuration set C. If it is too rare, then
even the most suitable algorithms such as TD(A) [15] [16]
perform poorly, since for a large part of the trial the agent
does not know whether its actions bring it towards the goal.
The frequency of the reinforcement depends on at least
three factors: the distribution of the reinforced configura-
tions with respect to C, the probability of being reinforced
during the learning phase and the exploration policy. We
consider them in our approach (section IV).

Let us discuss these issues by introducing a problem that
we have faced in the past. In this problem the agent has to
learn how to reach a moving target [17]. The control input
variable is the difference between the agent’s orientation
with respect to the target, before and after having executed
an action. The reinforcement is proportional to the reduc-
tion of the distance to the target in the direction where it
was detected when the action was selected. This reinforce-
ment function is effective only when the agent is faster than
the target, since it produces a behavior such that the agent
tends to align itself with the target’s trajectory, in order to
maximize the reinforcement. Unfortunately, if the target
is faster, it can easily escape, since this agent is not really
induced to reach it, but only to follow it. The designer has
included a bias coming from the expectation that going in
the direction of the target would enable the agent to reach
it. In our experiment [17], the agent was able to learn to
reach the target, even if the target was faster, when we
adopted a less informative but also less ambiguous, rein-
forcement function, which provided delayed reinforcement
only when the agent reaches the target. With slightly faster

targets the agent was able to predict the target trajectory
and take a more effective one, whereas with even faster
targets the agent is able to decide to stop and wait for the
target to come to it. However, in order to apply such a re-
inforcement function we had to design our trials according
to the LEM (Learning from Easy Missions [18]) methodol-
ogy, where the agent has to face increasingly complex tasks
to learn incrementally the final behavior. By doing short
experiments, it is possible to provide enough reinforcement.

D. Coherence and aliasing

Another problem in designing reinforcement functions
concerns the coherence of the reinforcement function
throughout the configuration space C as perceived by the
agent. This is related to the aliasing problem, which arises
when different configurations are perceived as the same.
This may be due either to intrinsic partial observability of
the environment or to misinterpretation of observations.

We have perceptual aliasing [19] when different configu-
rations correspond to the same I€ values. In particular,
the agent may not be able to observe enough data to dis-
tinguish among different configurations; in this case, O€
is affected by perceptual aliasing, and the only solution is
to redesign the sensorial apparatus or to introduce some
kind of memory as an internal state. Perceptual aliasing
also arises when different observations are interpreted as
the same input, affecting IC. This is a relevant problem if
the agent should take different actions from the undistin-
guishable configurations.

The problem of cluster aliasing [20] arises when a grid
model frames the real-valued data and the reinforcement
function provides different reinforcement for configurations
belonging to the same cell or cluster. Grid-based interpre-
tation is needed by learning algorithms working on discrete
models such as Q-learning and TD()), and it is also com-
mon in learning classifier systems [6] [21]. We have clus-
ter aliasing when configurations that receive different rein-
forcement correspond to the same IC value, that is when

der,e0 € C i (re; £ 7Tey) A (Ig = IC(;) (18)

In this case, the control system cannot distinguish the re-
inforced configurations from others. For instance, we may
decide that our robot receives a reinforcement whenever it
is far enough from the corridor walls. This produces clus-
ter aliasing, if classifying the distance by I€ we put in the
same cluster the reinforced configurations and some others.
In particular, when the agent gets closer to the wall, but
it is still in the same I€ cluster corresponding to the mid-
dle position, it does not receive the same reinforcement as
when it is closer to the centre. We show the effect of this
situation in section V-B.

One may argue that an appropriate value function may
reduce the effects of cluster aliasing. This is possible, but it
is better to reduce cluster aliasing by designing an appro-
priate reinforcement function (being aware of the clusters’
shape and distribution) without modifying the reinforce-
ment distribution algorithm and the value function. An-
other approach is to change the way of how the clustering



was made; we will focus our attention on it in a forthcoming
paper.

IV. THE CbD APPROACH

Most of the problems mentioned in the previous section
come from mismatch among the inputs to the agent, the
trainer and the designer. We consider the relationships
among these inputs by referring them to the c-space, which
is objective by definition. We will show how this approach
may help to clarify important aspects and to improve per-
formance.

The c-space is often the set of variables closer to OO,
since the designer usually considers the physical aspects of
the agent-environment system. In general, the variables
considered in O are a subset of V. Therefore, it is rela-
tively easy for the designer to define the goal configurations
on the c-space, or on spaces that can be easily reduced to
it.

If we consider any physical object, its configuration spec-
ifies the position of any point belonging to the object, rel-
ative to a fixed frame of reference. For a rigid object, it
is enough to give its position and orientation with respect
to the world frame. The cardinality of the c-space is the
number of independent variables, m, required to represent
it (e.g., 3 for physical objects operating in 2-D environ-
ments, and 6 for 3-D). Of course, the c-space can only be
trivially plotted if m < 3, but it is anyway possible to
make considerations on subspaces of this cardinality also
when the c-space is larger. In mobile robotics, for exam-
ple, it is often possible to apply a linear decomposition of
a complex c-space into several plottable subspaces (in the
target tracking example, it is possible to think about two
different c-spaces for the target and the agent). Moreover
the principles behind this approach are not dependent on
the dimension of the c-space. The possibility to plot hyper-
surfaces in the c-space makes only easier a task that can
be done anyway by matrix manipulation techniques. These
techniques are commonly used in robotics.

We suggest defining the reinforcement function by as-
signing values to hyper-surfaces defined in the c-space. The
basic shape of the reinforcement function we propose is
thus:

r(r) = FI™(7)) = f(i(V(7)))

where 7 is a function of the c-space variables. Let us now
discuss the impact of this choice on the solution of the
problems mentioned in section III.

vVey, (19)

A. Input mismatch

The definition of reinforcement functions related to the
c-space is in principle easy for the designer and provides an
objective basis to analyze I€, IR, OC, OR and O©, and
eventually design S€ and SR, or select new sensors. Notice
that most of the information needed to relate the input to
the c-space is available since it has been defined when the
robot was designed. However, it is also quite easy to define
it by simple considerations on sensor models, or by data
collection sessions.

The analysis of input makes it possible to define maps
from configurations to input values, and to highlight
whether the available input produces aliasing or cluster
aliasing. The design of the input interpretation (S€ and
S®) may reduce undesirable effects, as they become evi-
dent by the analysis. For instance, the designer can verify
whether the available sensors may provide enough informa-
tion for the reinforcement function, and, eventually, design
special-purpose sensor systems to implement an external
trainer [9]. Since it is possible to highlight the reinforced
configurations, how they are perceived, and which other
configurations are perceived as the same, and so indirectly
rewarded, it is possible to redefine S€ or S® to reduce clus-
ter aliasing. By knowing the reinforced configurations it is
also possible to control coherence.

B. Immediate and delayed reinforcement

The percentage and location of reinforced configurations
may be designed with the support of the c-space and pos-
sible problems may be faced. We define two properties of
the reinforcement function designed on the c-space:

o completeness: the capability of the reinforcement func-
tion to provide appropriate reinforcement in all the goal
configurations

o minimality: the capability of the reinforcement function
to reward only the goal configurations

Completeness is a necessary condition to minimality. An
incomplete reinforcement function may prevent the learn-
ing system to achieve the desired behavior. A non-minimal
reinforcement function includes some aspects different from
the ones strictly needed to describe the goal, and it may
lose coherence with respect to the goal definition. A min-
imal reinforcement function may provide too scarce a re-
inforcement. We can study on the c-space an appropri-
ate trade-off between reinforcement rate [22] and minimal
goal description. In order to increase the probability of ob-
taining reinforcement it is better to lose minimality than
completeness. This can be obtained by enlarging G with
reinforced sub-goals related to the main goal. As a particu-
lar case it is possible to consider providing reinforcement to
all the configurations (immediate reinforcement), although
this is not always possible [12], and may introduce unde-
sired bias [13] when not directly related to the main goal,
as discussed in section II. This may also introduce aliasing
and incoherence, which can be studied on the c-space.

It is possible to analyze, or even design, the exploration
of the c-space, highlighting eventual biases, or problems in
the exploration strategy. It is also possible to check the dis-
tribution of the reinforced configurations on the c-space: if
they are evenly distributed, it is possible to adopt standard
exploration strategies, otherwise it is possible to tune the
reinforcement function parameters to optimize the tempo-
ral reinforcement distribution [22], or even select special
purpose exploration strategies [23], and check on the c-
space their effectiveness.

Finally, it is possible to analyze the evolution of the sys-
tem in the c-space after the learning phase, in order to
evaluate its performance.



C. Extensions

To face specific designer’s needs, we may consider an
extended class of reinforcement functions, depending on
past values of the c-space variables:

=

r(r) = FAR(FY)) = FE(V ()

This allows, for instance, definition of the reinforcement
functions based on the difference between present and past
values of variables in the c-space, as in the target tracking
example presented in section III-C. However this tempo-
ral extension also increases the complexity of analysis and
design which are still based on the objective definitions
provided by the c-space.

An independent extension can be done on the concept
of the c-space itself. We introduce the augmented c-space
(ac-space) as the c-space augmented with variables not re-
lated to physical aspects, such as messages coming from
other agents. In some applications, we may also need to
represent this information data, since they are part of the
description of the state of the system, and may take part
in the definition of the task, or of the input.

Ve (20)

V. CASE STUDY

In this section we show the application of our approach
on a case study. We discuss the development of a rein-
forcement function to make a mobile robot learn to run in
the middle of a corridor. By this simple example we try
to face the problem of designing a correct reinforcement
function , while taking into account the features described
in section IV.

This section is composed of three parts: in the first we
use an a priori analysis to define the reinforcement func-
tion considering the c-space, in the second part we verify
our a priori analysis and in the last part we validate our
approach with the evaluation of the performance of the
learned controller.

A. A priori analysis

To deeply understand the issues discussed in section ITI-
B, we define a reinforcement function that considers I®
different from I€. We expect the agent to learn a correct
mapping from I€ to actions to reach the GOAL defined
as achieve and maintain the centre of the corridor. The
reinforcement function directly reinforces the goal configu-
rations for such a task.

The reader will see that in our approach we start from
a minimal and complete reinforcement function designed
on the c-space for the specific task. We observe that this
function cannot supply sufficient reinforcement and we re-
lax the boundary condition as explained in section ITI-C:
our purpose is to find out a trade-off between probability
of obtaining a reinforcement and cluster aliasing, trying to
preserve completeness and coherence.

The environment is a corridor 4 meters wide and indefi-
nitely long. For this particular task, we can represent the
c-space of the agent-environment system by a plot, since
the problem can be faced in 2 dimensions because of the

infinite length of the corridor. The free variables consid-
ered are the distance of the robot from the left wall and its
orientation in the corridor. We have selected these settings
to make easier the presentation. We may also notice that
the three variables typical of bidimensional problems, be-
come two on this analysis since the position with respect to
the corridor axis is irrelevant for this application. This is a
simplification that can be adopted to reduce the dimension
of the considered c-space.

The analysis of c-space has to consider the presence of
obstacles or constraints due to robot’s kinematics. In our
environment there are no obstacles, but robot shape, kine-
matics and the decision of maintaining a positive constant
speed give some constraints on the minimum steering ra-
dius, so that in some configurations the robot cannot avoid
a future collision with a wall.

Figure 3 represents the c-space for our environment. It
is described by the distance d of the robot barycentre from
the left wall, and its orientation § with respect to a line
orthogonal to the walls. In black are the configurations the
agent cannot reach because of its dimension (constraint).
In dark gray are the configurations from which the agent
cannot escape, given its limited steering abilities (g 1S
its steering radius) and its fixed speed forward. In figure 3
it is also shown, in transparent gray, the set of configu-
rations where the robot perceives the distance to the wall
with a sonar sensor orthogonally directed toward its left
side. The actual robot has six such sensors, covering the
frontal 210°; the values from each sensor are classified in
three intervals. In figure 7?7 we plot the 84 areas of the
c-space corresponding to the sensorial clusters for our ex-
ample. Different grey levels correspond to sets of configu-
rations perceived as different.

As described above, the task is to achieve the middle
of the corridor and maintain this position while moving
forward. Black dots marked as T'1 and T2 in figure 3 rep-
resent the goal configurations; the GOAL is to achieve and
maintain these configurations, that is, we want the agent
to reach the centre of the corridor and run along it, either
in the North or South directions; indeed, due to percep-
tual aliasing it will not be able to perceive the difference
between them.

A delayed reinforcement defined on these two points is
minimal, complete and preserves coherence with the goal
defined by the designer. In spite of this, anyone can notice
the small size of the reinforced area of the c-space. As
discussed in section III-C, it is possible to find out a trade-
off among minimality, coherence, aliasing, and probability
to obtain a reinforcement by considering a reinforced area
larger than the goal area.

This trade-off can be obtained by relaxing the bounds
in the definition of the goal configuration. We consider a
reinforcement function that gives a reward when the robot
crosses the interval of 30 c¢cm around the centre of the
corridor. We also analyze how relaxing the bounds on the
orientation of the robot when crossing this area can affect
aliasing and coherence. This requires considering different,
rectangular reinforced areas on the c-space and compare
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Fig. 3. The configuration space for a mobile robot operating in a
corridor

them with the corresponding cluster areas. In figure 4 we
present an example of the impact of the cluster aliasing.
The reinforcement is given when the robot is within £30
cm from the centre of the corridor, with an orientation in
the range of +30° with respect to the walls: the figure
shows in black the reinforced area, and in light gray the
clusters containing both reinforced and partially reinforced
configurations.

Following our approach we want to increase the rein-
forced area without introducing too much cluster aliasing.
In order to understand this feature, we analyze how the en-
largement of the reinforced area in the c-space affects the
ratio between the area corresponding to reinforced config-
urations and the area corresponding to clusters containing
reinforced configurations. In figure 5, we plot the men-
tioned ratio and we notice a growing trend reaching its
maximum at about £38°, and decreasing after that. Look-
ing at this plot we expect to find the best trade-off among
the above mentioned reinforcement function features (prob-
ability of obtaining a reinforcement and cluster aliasing) in
the proximity of its maximum. After reaching the maxi-
mum, the trend in figure 5 decreases; this means that the
reward that we give to the agent is increasing cluster alias-
ing, to some extent. In fact, reinforcement is also given
to configurations that we do not want or expect to reward.
Notice that this can also be computed in multi-dimensional
spaces.

To analyze coherence, we sample this trend every 20°
(£10°, £30°, £50°, £70° error accepted in the robot ori-
entation) and we plot for each cluster the percentage of the
area covered by the reinforcement function; this index pro-
vides a measure of how much a particular cluster is per-
ceived as containing goal configurations. The higher the
index value, the larger the area covered by the reinforce-
ment function with respect to the cluster area. Values be-
tween 1 and 0 correspond to aliased areas. The aliasing
is maximum for 0.5. Also this can be easily computed in
multi-dimensional spaces.

In figure 6(a) (£10°), we notice how little of the c-
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Fig. 4. The Real area covered by a reinforcement function designed
on the c-space (light gray) and the theoretical (black).
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Fig. 5. The ratio between the area covered by the reinforcement func-
tion and the area covered by the states partially overlappingwith
it.

space is reinforced; thus the corresponding reinforcement
function gives a low probability to obtain reinforcement.
Figure 6(b)(+30°) corresponds to a reinforcement func-
tion providing enough reward for the desired configura-
tion. Cluster aliasing is still quite low; we expect to obtain
satisfactory results using this reinforcement function. In
figure 6(c) (£50°) we have a correct reinforcement in the
neighborhood of the goal, but a certain level of aliasing as
well. As presented before, this negatively influences the
learning process. We guess that this may require the agent
longer learning experiments to reach the GOAL, since the
problem is not related to any incoherence in the reinforce-
ment function. We find some incoherence in the last rein-
forcement function (figure 6(d) £70°), where we reinforce
new, alternative configurations (corresponding to the thin-
ner peaks).

Totally relaxing the bound in the robot orientation
(£90°, not shown in figure 6) when crossing the middle
of the corridor, we obtain a reinforcement function that
gives the agent a high probability of receiving a reinforce-
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the learning experiments

ment, but with a lot of cluster aliasing, incoherence and
incompleteness. This is because we are describing the per-
formance considering only the position of the agent in the
corridor, without taking its orientation into account.

B. Ezxperimental Results

In this section we verify the expectations of the a priori
analysis, by comparing the results obtained by different
reinforcement functions. This comparison is possible in
a simulated environment, while in real applications the a
priori analysis should directly guide selection of a single,
correct, experimental setting. Given the large number of
experiments and the long duration of each one of them (we
totally perform about 8 million simulation steps) it would
have been impossible to use real robots ( 2700 hours of
experiments) to obtain the same set of results.

B.1 The learning system

The approach we are presenting in this paper is indepen-
dent from the particular reinforcement learning algorithm.

In the experiments we are presenting, we use a Learning
Classifier System (LCS) [5][6] that we have developed to
test properties of models and reinforcement distribution
algorithms [24] [25]. We can consider LCSs as RL algo-
rithms working on a model of the agent’s behavior in the
environment.

A classifier has a condition/message structure; the con-
dition encodes the state of the system needed to activate
the classifier. In the message part, we consider only actions
to be submitted to the output interface.

We consider a simplified type of LCS [26], where each of
the symbols in conditions and messages denotes an interval
of real input values for the corresponding variable. S€ and
SR classify the real input values into classes corresponding
to real-valued intervals; the same can be done with the
output interface for real-valued output.

A rule base containing the classifiers is used as the knowl-
edge base in a LCS, and it is updated by the RL algorithm
during the interaction with the environment.

At each control step, one classifier is selected among the



ones whose antecedent match the current perception (ac-
tive classifiers). The consequent values of the selected clas-
sifier are sent to the output interface. The action result
is evaluated by the reinforcement function, and the rein-
forcement distributed to the rules that have contributed
to reach this state. Finally, evolutionary operators are ap-
plied to improve the rule base, by considering the strength
of each rule, and/or its accuracy.

In the case study we are presenting, we show results ob-
tained by a LCS using Q-learning as reinforcement distri-
bution algorithm. Here, the exploration strategy is random
choice with probability p = 0.2. We have excluded general-
ization, and, with it, the need for crossover: the classifiers
are generated only by cover detection [6] and mutation is
limited to the consequent part.

Adopting of this simplified model makes it possible to
focus attention on the role of the reinforcement function.

B.2 Experimental setting

The learning activity is done on a simulated model of the
mobile robot CAT [27] featuring six sonar sensors, cover-
ing the frontal 210°. The distance obtained by each sonar
is affected by noise, uniformly distributed in the interval
+5% of the range. Notice that the task we have selected
is apparently simple from the behavior point of view, but
it is quite complex from the learning point of view, given
the dimension of the search space. The learning process
consists of 20 trials, each including 11 consecutive experi-
ments. Each experiment lasts 500 control cycles, and the
robot starts from a different position selected in a set of
pre-defined positions, for a total of 110,000 control steps.
Sets of trials to be compared with each other, at the end
of the learning process, have the same randomization seed.
At the end of the learning trials the set of classifiers can be
divided into subsets with respect to their activation con-
ditions. We select the best classifier from each of these
subsets.

B.3 Learning trials

In our experiment, we use the reinforcement function
considering a £38° error in the orientation, since this is
the maximum in the trend of figure 5. Figure 7(a) repre-
sents the average reinforcement during the learning phase.
Learning activity reaches a good result around the 14"
trial: by observation, we noticed that the robot moves
around the centre of the corridor with small oscillations.

In figure 8 we show the results of the comparison of differ-
ent reinforcement functions in the same experimental set-
ting. In the first plot (a), we use the reinforcement function
with the maximum value when the robot crosses the cen-
tral area with an orientation within £10° with respect to
the corridor axis. As expected, the learning phase reflects
a certain lack of information if compared to the graph of
figure 7(a), and it is not yet stable at the end of our trial.
Looking at figure 8(b), we notice how, using £50°, the
learning phase is slower, since we introduce cluster aliasing
in the reinforcement function. The introduction of some
incoherence with +70°(see figure 8(c)) increases the diffi-
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culties of the learning process. In figure 8(d) we use the
incomplete reinforcement function (£90°) presented in sec-
tion V: it is evident that the agent does not learn the task
in the expected time.

All the experiments reach a good result with a long train-
ing time due to the convergence of Q-learning in finding
the optimal policy, but comparing figure 7(a) with figure 8
you may notice how the reinforcement function affects the
learning process.

C. Performance evaluation

We evaluate the performance of the learned controller by
a function defined on the c-space and an evaluation proce-
dure. Since the GOAL is to achieve and maintain con-
figurations in the middle of the corridor, our performance
evaluation function covers the whole c-space. It returns a
real value in [—1 1], inversely proportional to the distance
of the present configuration from the goal configuration G.
We evaluate the performance in 27 trials, each lasting 700
control steps, starting from the same 11 positions of the
learning session and from 16 intermediate ones. This is
carried out in order to test the generality of the learned
controller.

To compare the quality of the controllers obtained by the
learning algorithm using different kinds of reinforcement
functions we present in figure 9 a different set of exper-
iments testing the performance of the learned controllers
at half of the learning phase for reinforcement functions
allowing an error in orientation respectively of +£10°(a),
+38°(b), £50°(c) and £70°(d). We consider the controllers
obtained at half of the learning time since this highlights
some interesting aspects that we would like to discuss.

For the first reinforcement function (see figure 9(a)) the
test phase shows an agent that wanders in the corridor,
and, when starting from the 18" position, crashes on the
wall, this is due to a poor learned behavior. The designed
reinforcement function (+£38°) obtains a good result also
in half the learning time (figure 9(b)); the second part of
learning time is spent to reduce the oscillations (as shown in
figure 7(b)). Notice that the agent stays close to the centre
of the corridor in all the trials. In figure 9(c), we present the
results of the experiment with a reinforcement accepting a
+50° deviation from the corridor direction. The agent’s
difficulty to learn the correct behavior from the informa-
tion given by the reinforcement function is evident. The
difficulties in this case are due to the presence of aliasing
in the reinforcement function definition. The results of the
last experiment (figure 9(d)(£70°)) reflect the presence of
incoherence in the reinforcement function affecting the first
part of the learning phase. Observing the performance we
noticed that the agent does not learn a correct behavior for
all the starting positions, since it keeps turning around in
almost all the trials except for those where it starts from
the central position with the correct orientation.

In summary, we have obtained best results with the rein-
forcement function designed according to our a priori anal-
ysis, and the worst with incoherent and aliased reinforce-
ment functions.
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VI. DISCUSSION

In our case study we have considered a c-space consisting
of only two variables for the sake of simplicity of presen-
tation. The CbD approach can be adopted also in more
complex c-spaces and with more challenging tasks. The
general features of the approach can guide the definition of
effective reinforcement functions even though visualization
can be obtained only for sub-spaces. In some application
it is possible to partition the c-space (defined on all the
free physical variables) in two sub-spaces, one relevant for
the task and the other not. In this case the analysis can
focus on the first sub-space reducing the complexity of the
reinforcement function design. In other applications such
decomposition is not possible and the analysis should be
done on the whole c-space. We discuss a couple of exam-
ples: in the first we partition the c-space in sub-spaces, in
the second we use the whole c-space.

We first consider a target-tracking task (prey — preda-
tor): a typical task in robot learning. In this case the
c-space consists of six variables which could be either the
absolute positions and orientation of the two agents, or the
absolute position and orientation of one of them and the
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relative position and orientation of the other. We focus on
the second representation. The predator’s task is to reach
the prey while this is moving in the environment. The
relevant variables for this task are those representing the
relative position of the prey with respect to the predator;
the absolute position and orientation of the predator and
the orientation of the prey are irrelevant. The complex-
ity of the c-space is now reduced: two variables instead of
six. Now it is possible to define a reinforcement function
rewarding the configurations where the predator is close to
the prey analyzing the influence of cluster aliasing and the
reinforcement distribution in this reduced c-space. For ex-
ample, rewarding the configurations where the distance to
the prey is less than a given threshold d it should be possi-
ble to choose d such that there is no sensorial cluster that
is only partially covered by the reinforced configurations;
thus reducing cluster aliasing problems.

In the second example, we consider a robot that should
prevent intrusion in a controlled area for a surveillance task.
It has also to catch the eventual intruder only if it enters
a “forbidden” area. In this case, the task is similar to the
previous one, but we cannot consider the absolute position



of the predator as irrelevant. Reasoning on the task the
designer may detect different aspects of the goal. Here,
the global behavior is obtained by the intersection of two
separated behaviors: catching the intruder and the control
of a restricted area. It is possible to consider the desired
goal as the intersection of these two sub-goals each defined
on a separate sub-space, each one described by a different
set, of variables: on each of them it is possible to apply the
CbD approach to define the corresponding reinforcement
function. The reinforcement function we described in the
prey-predator example can be used also for the intruder
catching task, while for the surveillance task we have to
consider the variables describing the position of the agent.
By appropriately choosing the variables it is possible to de-
fine a threshold-based reinforcement function also for the
surveillance task. Given such a definition, goal configura-
tions are bounded in two hyper-cubes. The intersection of
these two hyper-cubes represents the global goal configu-
rations, and this is easily computed analytically. If it is
not possible to bound reinforced configurations by simple
hyper-cubes, the intersection between non-linear regions
can be computed by discretization of the c-space and nu-
merical analysis. This kind of reasoning may appear in-
coherent with the sensorial cluster analysis since this im-
plies reasoning on the projection of each cluster on to the
sub-spaces. However the selection of the sensors and their
interpretation is often done by considering the sub-tasks
as separate; also in this case the sensors for robot posi-
tion estimation are different from those used to detect the
intruder.

As you can see, the CbD approach can be adopted in
complex domains once a basic analysis of the task, the
selection of variables, and the design of the sensorial appa-
ratus are defined. Given the little design effort involved we
obtain the expected results from the learning process.

VII. RELATED WORK

Other researchers have studied reinforcement function
design using different approaches. Let us briefly discuss
their relationship with our approach.

Santos [22] [28] uses a reinforcement function definition
considering O® = O€ and tries to face the designer prob-
lem with the estimation of high level features based on
analysis of data trends. He defines a parametric reinforce-
ment function, which is subsumed by our definition 4. The
reinforcement function is defined in terms of constraints
among estimators of natural language features, based on
the set of the available data. Such estimators produce the
input I® different from I€, and can be considered as vir-
tual sensors S®: the proposed trainer is thus an external
trainer. The reinforcement is delayed.

Santos proposes the Update Parameter Algorithm
(UPA) to tune off-line the constraints for estimators. This
is done in order to optimize reinforcement distribution from
the exploration point of view; it is aimed at guaranteeing a
given amount of reinforcement assuming a random explo-
ration policy. This may cause incoherence problems, since
adapting the reinforcement function on random exploration
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may not guarantee a description for the desired behavior
close to the designer’s natural language specification.

Santos also proposes the Dynamic-UPA to modify the re-
inforcement function during learning. This is done to keep
constant (and high enough) the percentage of received re-
inforcement. Following this methodology it is possible to
lose minimality and completeness, since the modification
of constraint bounds changes the distribution of reinforce-
ment among the configurations, giving reinforcement to the
ones close to the original goals (affecting minimality) or
reducing the number of reinforced configurations (affect-
ing completeness). This process is uncontrolled by the de-
signer, but automatically driven by D-UPA.

Santos’ approach gives a solution to the problem of the
too-delayed reinforcement, since increases the number of
reinforced configurations when the reinforcement is too
scarce. Problems about coherence and cluster aliasing may
arise, since continuous changes in reinforcement function
deriving from D-UPA may affect the agent’s perception of
the desired behavior. In fact, the same perceived configu-
ration may receive different reinforcement in different mo-
ments, due to the dynamic adaptation of the constraint,
and I® # IC. In the application presented in the pa-
per, this approach is anyway successful, due to the small
changes induced and to the quite stable learning algorithm.

Also Matarié¢ studied the definition of reinforcement
function [13] [14] focusing on situated environment. She
claims that in this case it is important to give both de-
layed and immediate reinforcement (heterogeneous rein-
forcement); she proposes to introduce some knowledge
about the task in the immediate component (progress es-
timators) of the reinforcement function to speed up the
learning process. The variables in her reinforcement func-
tions refer to increments of c-space variables or to variables
of ac-space; therefore, her proposal is subsumed by CbD.

Bacchus, Boutilier and Grove [11] propose a temporal
logic to represent reinforcement function for temporally ex-
tended behaviors. They represent a GOAL by a temporal
proposition and they define it as the simplest reinforcement
function. This is on the line of our approach which in prin-
ciple can be extended to include temporal logic formulae
as relationships between c-space variables appearing in the
reinforcement function (see eq. 20).

VIII. CONCLUSION

We have presented an approach to the analysis and the
design of reinforcement functions that is especially relevant
for RL algorithms working on a finite number of states and
actions such as Q-learning and TD(\).

We have presented some problems, and discussed how to
tackle them. In particular, we have introduced CbD as an
approach to the definition of reinforcement functions and
sensorial data interpretation, based on an objective model
of the system. CbD is a contribution to the definition of a
reinforcement learning engineering, as opposed to crafting;
thus it is possible to produce expectations which will be
confirmed by experience, instead of working by trial and
error relying on the designer’s experience.



We have presented the application of our approach to a
learning classifier system that learns a behavior for a sim-
ulated mobile robot in a realistic environment. We have
shown how an accurate design of the reinforcement func-
tion, supported by an appropriate set of tools, can posi-
tively affect the learning performance. We have also seen
how a methodological approach to reinforcement function
design may support a priori expectations about this per-
formance, thus improving the design activity.

We have also applied our approach on a real CAT robot.
The methodology does not change, since its principles are
valid both in simulation and the real world. We first
learned a satisfactory controller for the simulated robot
and then applied it on the real one. CAT was not able to
keep the center of the corridor, but had a behavior simi-
lar to the simulated one navigating slightly on the right of
the middle line. Then, we have performed learning trials
with the real robot that was finally able to achieve the de-
sired result. A posteriori, we verified that the problem was
due to the incomplete model used in simulation, which did
not take into account mechanical asymmetry. In this case,
the stochasticity of observations did not give any relevant
contribution.

In general, it could be argued that C should take in ac-
count the stochasticity of the environment, introduced by
observations, unmodeled aspects, or unpredictable events,
such as those induced by other agents. In the approach we
have proposed, stochasticity is not considered, since the
stochastic model of the agent-environment system is usu-
ally unknown and hard to estimate [13]. The RL algorithms
are designed to evolve the controller in such a stochastic en-
vironment. The reinforcement signal is anyway affected by
uncertainty and stochasticity. In our approach we suggest
how to link it to the objective variables of the c-space so
that the design is not left only to the designer’s ability,
and it is possible to analyze the eventual stochasticity in
perceiving the reinforced configurations.

We are also presently working on other aspects related to
the design of reinforcement learning systems on real world
devices. In particular, we are studying the other side of the
IR-IC relationship problem: how to cluster the sensorial
data to best match the desired reinforcement function. We
have studied the shape and distribution of clusters with the
support of the c-space, which can be influenced by both
sensor features and data interpretation; an accurate design
of S€ and S® can improve the performance of the learning
system and of the obtained controller.

An open problem concerns the relationship between re-
inforcement function and generalization, one of the most
interesting features of LCS, and RL in general. We argue
that generalization is a way of facing the problem of adapt-
ing the clusters to reduce the learned knowledge base. We
are studying how a reinforcement function can influence
generalization, and in this we are applying techniques re-
lated to those presented here, by analyzing on the c-space
the impact of generalization.

We are also working on these topics applied to Learn-
ing Fuzzy Classifier Systems (LFCS) [29], where a fuzzy

14

model is learned. This introduces a better mapping be-
tween the clusters, which are fuzzy, and the real-valued
data. However, some problems are also introduced in the
learning process. We have discussed this approach else-
where [24], [25], [30], and we will compare the interval-
based and the fuzzy-based approaches in a forthcoming

paper.
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