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Abstract

Introducing fuzzy logic in knowledge representation is a general tech-
nique to improve flexibility and performances of knowledge based and
control software. Many researchers propose to introduce fuzzy logic rep-
resentation in learning algorithms, discussing some implications of this
tecnique. Interesting features arise when fuzzy sets substitute the interval-
based classification of input in a learning system; some of them imply an
improvement in performance others an increased structural complexity in
the architecture of the system and in the learning process. Focusing on
Learning Classifier Systems, the introduction of fuzzy logic produces some
new interesting features in this learning algorithm from many points of
view: a new approach to classifier competition, the birth of competition
vs. cooperation dilemma and the introduction of an appropriate fuzzy in-
terface with external world. In this paper, we discuss a fuzzyfication of the
classical architecture of a learning classifier system (Holland’s approach)
and the improvements deriving from the use of fuzzy logic. In this work
we especially discuss the competition vs. cooperation dilemma, analyzing
the influence of exploration policy on the performance of crisp and fuzzy
versions of learning classifier systems. We mainly focus on the use of fuzzy
classifier systems to implement behaviors for reactive autonomous agents
in the mobile robotics domain.

1 Introduction

The growing interest of part of Artificial Intelligence (AI) community in Fuzzy
Logic (FL) and Learning Classifier Systems (LCS) has generated some hybrid
systems to join the advantages of both in a new extension of the reinforcement
learning (RL) algorithm. Many fuzzy implementations of classic RL algorithms,
reflecting this new approach, are presented in literature [14] [6] in this paper,
we focus on Learning Fuzzy Classifier Systems (LFCS) analyzing the features of
LCS crisp and fuzzy architecture and the issues in the learning process arising
in using fuzzy logic in these learning systems. LFCS [23] [9] have been one of the
first applications of Evolutionary Learning (EL) to learn Fuzzy Logic Controllers
(FLC). FL has been introduced in both the streamlines along with LCS where



developing: the Pittsburgh [19] [13] and the Michigan [1] [12] approaches. In
the Pittsburgh approach the EL algorithm works on a population of rule bases
(FLCs) evolving and evaluating them in parallel; in the Michigan approach, it
works on a population of rules in the rule base applying the learning algorithm
to sub-population them.

In this paper we describe a complete LCS architecture following the Michigan
approach and we propose a modular schema in both crisp and fuzzy versions.
We choose to implement LFCS with the Michigan approach to deeply investigate
how the features of fuzzy logic face the problem of generating a complex non-
linear model smoothly joining some local models implemented by sub-population
(i.e. this is the origin of competition vs.cooperation dilemma).

The rest of this section provides a basic background on FL and LCS to
introduce the concepts used in the definition of LFCS. In next sections we discuss
some motivations for introducing fuzzy logic in knowledge representation and
the model of classical LCS architecture discussing its fuzzification. The new
features arising from our approach are further discussed with an experimental
example in the mobile robotics domain. In this section we mainly focus on
the relationship between the well-known exploration vs. exploitation dilemma
in RL algorithm and the new competition vs. cooperation dilemma arising in
LFCS.

1.1 Fuzzy logic

Since their introduction in the late sixties [27], fuzzy sets have been adopted
to map real numbers to symbolic labels. Elements of a universe of discourse
belong to a fuzzy set to a certain extent, according to the so-called membership
function that defines it. Let us consider an universe of discourse X (say, an
interval of real numbers), and a fuzzy set, associated to the label close, defined
by a membership function pcj,se(2) that ranges on elements of the universe of
discourse and maps them to the real interval [0 1] (figure 1).

For instance, using fuzzy sets to classify a real-valued measure for a distance
given by a sonar sensor, we can say that an element x of the universe of discourse
(the distance measured in mm) belongs to the fuzzy set close to the extent
Lelose (). For the fuzzy set close in figure 1, pcose(690) = 0.7. Giving a
semantic value to the fuzzy set, we can say that the value x = 690 can be
classified as close with a degree of 0.7.

Fuzzy sets are often used to classify real values in categories, thus making it
possible symbolic reasoning about the phenomena under the incoming numbers.
Membership of a number (e.g. x) to a fuzzy set (e.g. close) includes two kinds
of information: the name of the fuzzy set, that brings information about the
category to which the number is classified, and the degree of membership (e.g.,
Leiose(x)) that comes from the definition of the fuzzy set. The membership
value can be considered as an alternative representation of z, although it is
unique only for the class of monotonic membership functions. In general, the
relationship between a real value x and its degree of membership to a fuzzy
set I (i.e., u(x)) is not bijective. This potential problem is solved by defining
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Figure 1: The fuzzy membership function (above) and the intervals (below) to
interpret the distance measured by a sonar sensor.

partially overlapping fuzzy sets, and considering as representative of z the set
of all the values u;(z) V 1.

Considering a crisp model and a fuzzy one with the same granularity (i.e.
number of intervals or fuzzy sets), the information content of a fuzzy representa-
tion is very close to that of a real-valued representation, and considerably higher
than that of an interval-based. Moreover, the selection of certain well-known
configurations of fuzzy intervals guarantees high robustness to noise and certain
design errors in control sofware implemented by FLC [17].

1.2 Learning Classifier Systems

We can consider LCS [15] as RL algorithms [16] working on a model of the
system’s behavior in the environment, without any explicit model of the en-
vironment itself. For a LCS the rule base, containing the classifiers, can be
considered as a knowledge base (figure 2) updated by the RL algorithm during
system interaction with the environment.

A classifier can be seen as a rule with a condition/message structure. Condi-
tion codifies the perception of the state of the system, represented by sensorial
perception or an internal message, needed to activate the rule. In the message
part, it is possible to code an action to submit, through the output interface,
into the environment or an internal message to be used by the classifier sys-
tem. Such implementation of LCS can learn reactive rule bases and systems
with an internal state, represented by the internal message list to face with non-
Markovian environments [18]. In this paper we consider a simplified type of
LCS [4] using the Michigan approach to implement purely reactive behaviour.

Each classifier is a rule whose antecedents corresponds to a value for a lin-
guistic variable associated to a real-valued variable. The information needed by
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Figure 2: A simplified LCS architecture.

a LCS is usually discretized in order to have classifiers working on a finite set
of input and output values. Using an input interface module it is possible to
classify the real input values into classes corresponding to either crisp intervals
or fuzzy sets. In crisp LCS, we consider that each value is one of the n symbols
representing intervals of values of the linguistic variable; in LFCS each value
is a symbol representing a fuzzy subset [17] of the set of values the real-valued
variable can take. A don’t care symbol may replace any of the mentioned sym-
bols, meaning that the value of the corresponding variable is not relevant, that
is any real value matches the antecedent. The consequents are symbols corre-
sponding to values for each of the consequent variable. A classifier of this kind
as a conceptual shape like this:

IF (FrontDistance is Low) AND
(LeftDistance is High) AND
(RightDistance is Don_T_Care)

THEN (TurnDirection is Left)

At each control step, one classifier is selected among the ones whose antecedent
matches the current perception of the environment. The consequent value of the
selected classifier is sent to the output interface and, by means of an evaluation
signal from the environment (the reward), selected rules are rewarded in the
Rule Base. In some extent, it is possible to partition our LCS implementation
in four principal submodules (figure 2):

o Matching & Cover detection: chooses classifiers matching the actual per-



ception from Input Interface to form the Match Set and eventually gener-
ates random ones

o Rule evaluation module: chooses classifiers in the Match Set evaluating
their characteristics and their message part is sent to the Output Interface

o Credit distribution: distributes external reward to classifiers which pro-
posed the last action sent to the environment

e Genetic Algorithm: genetic operators (crossover and mutation) operate on
the Match Set to generate new classifiers in the Rule Base

2 Motivation for LFCS

The main motivation to integrate LCS and fuzzy sets is to combine the ad-
vantages of both in a unique RL algorithm. LCS enables a system to learn a
knowledge base and optimize it, by interacting with the environment, even when
limited information is available. Fuzzy sets, allowing partial overlapping of their
membership functions, give the possibility of a graceful sliding classification of
continuous values to contiguous classes. Moreover, it can be demonstrated that
if the sum of the membership values equals 1 for any value in the range of the
variable, the robustness of the system with respect to noise is optimal [17].

Another important benefit, arising when modeling the application domain
and the control system by fuzzy sets, is that we have both a relatively small
model and the potential to exploit all the precision available from real-valued
data. An interval-based model maps a whole range of real values onto a unique
interval, denoted by a label. In other terms, the control system considers in the
same way all the values belonging to the interval. A fuzzy set model maps a
set of real values onto a potentially infinite number of pairs < label, pgpe; >
that bring information about both the class to which belongs the real value and
the degree of this classification. This is much more informative than a simple
interval mapping.

For instance, referring to figure 1, we can observe that with the fuzzy classifi-
cation the value 950 mm is considered as completely medium, pmedium (950) = 1;
the nearby value 750 mm is still considered as medium with a degree pimedium (750) =
0.5, but also considered as close to some extent, picose(750) = 0.5. With an
interval-based classification such as that shown in figure 1 (below), which is
commonly adopted in LCS, the value 751 mm is considered medium and the
close value 749 mm is considered close. This is in contrast to the common-sense
interpretation of these classes and may result in abrupt changes of the action
taken by a control system based on this classification. In fact, because more
than one fuzzy state may be visited at the same time, we have a smooth tran-
sition between a state and its neighbors and, consequently, smooth changes in
the actions. This is desired in many behaviors for autonomous agents [1] [2] as
well as in control application [20].



When the fuzzy set approach is used to model a control system [10], usually
we have a set of fuzzy rules mapping fuzzy values of input variables to fuzzy
values of output variables. The resulting FL.C has many interesting properties,
such as robustness, smoothness of action, and wide range of applicability [17].
Adopting a fuzzy representation, it is also possible to integrate expert knowledge
into the control system. Moreover, prior knowledge derived from another LECS
learning session or an human expert, can be used to initialize the RL algorithm
starting the learning process.

It is common to operate with RL in simulated environments, modeled on
simple assumptions about the sensorial input; fuzzy controllers have proved to
be robust enough to compensate differences between simulation and reality once
applied on real agents interacting with a real environment [14].

3 Classic architecture

In this section, we briefly discuss our LCS architecture and introduce a modular
approach to understand the real interplay between the learning components.
Using this approach we underline factors that interact in forming the knowledge
base containing the rules governing the agent’s behavior. In figure 2 modules
belonging to the learning algorithm are represented with rectangles, modules
containing classifier sets with rounded rectangles and the information flows with
labeled arrows. As previously described, the architecture of the LCS considered
in this paper consists of four main modules working on the Rule Base and on
the Match Set:

e Matching & Cover Detection
e Rule Evaluation

e (Credit Distribution

e Genetic Algorithm

information from the environment is classified by an Input Interface in intervals
and the action proposed by the selected classifier is sent to the Output Interface
at the end of the inference cycle. In the next paragraphs we describe the im-
plementation of each module operating on the classifier sets and the algorithms
cooperating to the RL process in the Credit Distribution module.

3.1 Matching & Cover Detection module

The Matching module selects classifiers in the Rule Base matching the actual
perception of environment’s state sensed by Input Interface with their condition
part. Selected classifiers form the Match Set. When no classifier matches with
its condition part the actual state the Cover Detection module generates at
least one classifier with a condition part matching the perception and a random
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Figure 3: Match Set formation.

message part. Moreover, it is possible to set a minimum number of classifier to
be present in the Match Set after Matching & Cover Detection.

Figure 3 reports the formation of a Match Set from the state sensed by the
Input Interface and the classifiers in the Rule Base; in this simple example,
labels used by the crisp interface are 1 and 0 the label x stands for don’t care.
The don’t care condition in a classifier allows the matching of corresponding
variables independently of their value. Generalized rules, containing dont’ care
symbols in their antecedent, compact the Rule Base and enable the reactive
behavior of the agent to face, at least, unknown states of the environment [26].

3.2 Rule Evaluation module

The Rule Evaluation module selects the action to be sent into the environment
among the classifiers actually present in the Match Set. This module chooses
a classifier by evaluating a particular rule feature: its fitness. This feature,
updated by the Credit Distribution module, is a measure of action’s quality
(i.e., message part of it) proposed for the actual state (i.e., agent perception).
Different choices are possible to represent the fitness for a classifier, two of them
are:

e strength: fitness is an estimation of the future expected reward earned by
the classsifer

e accuracy: fitness is inversely proportional to the prediction error of the
action proposed by the classifier (it estimates the lack of knowledge)

The policy applied in the Rule Evaluation module in choosing rules has to
deal with the so-called exploitation vs. exploration dilemma. The deterministic



choice of strongest classifiers, exploitation, does not guarantee a correct learning
process, since, in this case, the system continues to evaluate the quality of few
rules and nothing is done to consider rules generated by the Genetic Algorithm
module and never tested. Vice versa, by always choosing the less tested rules,
exploration, it is possible to cover widely the search space but without refining
the learnt policy exploiting it. These two approaches in choosing rules from
the Match Set are the extremes of a continuous set of possibilities; we need a
trade-off to obtain satisfying results.

Many exploration policies introduce probability Pr(c*) in doing the classifier
selection to accomplish with the exploration vs. exploitation dilemma, some of
them are:

e Random choice:

Pr(c*) = {

%, for the strongest classifier

+, for arandom classifier (also the strongest)

e Montecarlo: given the strength s for a classifier

) { 0, ifs=0
Pr(c*) = s(c*)
I SCE else

cEMatchSet
e Boltzman: given the strength s for a classifier, it uses the temperature T
to regulate the exploration level

s(c*)
e T

Pr(c*) = e

EcEMatchSet e

o Mized strength and accuracy random choice:

Nae=l = for the strongest classifier

Ni, for the less accurate classifier
ac

Pr(c*) = {

3.3 Credit Distribution module

The Credit Distribution module updates, using the reinforcement signal (re-
ward), the fitness of active classifiers in the Rule Base whose action has been
proposed to the environment. The credit apportionment faces a structural and
temporal problem: the reward is distributed to active classifiers, either gener-
alized (i.e., with don’t care symbols in the condition part) or not, proposing
the same action (structural distribution) and back-propagated to the previous
active classifiers to build temporal chains of rules (temporal distribution).

Bucket Brigade [8] was the algorithm originally proposed for credit assign-
ment in LCS, it uses the concept of Action Set. In our implementation, the
Action Set consist of the classifiers in the Match Set proposing the same action
sent to the environment. At each inference cycle the algorithm executes these
steps:



e creates the Action Set A; with classifiers proposing the chosen action ay

e reduces the strength s of each classifier ¢; belonging to A; according to:

sc))=(1=0b)-(¢) 0<bx1,

e distributes to classifiers in A;_; (i.e., the previous Action Set) the strength
subtracted to the classifiersin A;. To update the active classifiers’ strength
it applies:

1
s'(ci—1) = s(cg_1) + - E b-s(ct) n = number of classifier in A;_q,
cEA;

e distributes to classifiers in A; the reward r; obtained executing a,
s"(cy) = §'(er) + 74

Bucket Brigade is not a defined standard and there is not a rigorous demon-
stration of convergence for this algorithm, the implementation presented in this
section is only one out of the possible; many versions of this algorithm imple-
ment more sophisticated criteria in strength subtraction and redistribution.

Recently Q-Learning [24] has been applied to the credit apportionment in
a LCS; the strength of a rule matches the Q-value of the corresponding State-
Action pair [25]. To each classifier ¢; belonging to the Action Set A; the Credit
Distribution module applies:

q'(ce) = qler) +alry + - Ct+flneaj(i+l(fI(Ct+1)) —q(ct))

O0<a<l1IAnO<Ly<]I

In [5] and [7] also Credit Distribution algorithm based on TD(A) [21] [22] for
LCS is proposed, but its description is not in the scope of this paper.

3.4 Genetic Algorithm module

The Genetic Algorithm module applies genetic operators to evolve classifiers
in the Rule Base substituting the worst ones. Best classifiers, from the fitness
point of view, are selected as parents and a new generation of classifiers is created
applying crossover and mutation operators: new classifiers will compete with
other ones in the rule base to survive. The main features of this implementation
of the genetic algorithm are:

e Selection criteria
e Population’s choice

e Crossover and mutation operators
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Figure 4: Examples of genetic operations.

In our approach, the probability of selection for a classifier is proportional to the
normalized strength: the ratio between the classifier strength and the average
strength of classifiers in the selected sub-population (classifiers with the same
condition part). Accuracy is another possible choice as fitness value [25], it can
be useful to avoid the growth of too many imprecise, generalized classifiers.

To implement a genetic algorithm we have to select a population; we present
here two different possibilities: selecting all the classifiers in the Rule Base or
the classifiers in the Match Set. The first approach uses genetic algorithm to
optimize globally the Rule Base, but does not consider that classifiers refers to
different parts and context of the search space, so classifiers with low fitness
may represent the best knowledge for a certain part of the environment. The
second approach uses niche genetic [8], where the population selected for genetic
manipulation is only the Match Set, to avoid the above mentioned problem.

Once selected n classifiers to “reproduce”, the genetic algorithm applies ge-
netic operators to their copies executing crossover with probability P..,ss on
every n/2 pairs of them (figure 4a, 4b) and mutation with probability P,
considering that every allele (i.e., a cell in the figure) has probability Pgjjee of
being mutated (figure 4c).

4 Fuzzy architecture

The architecture of LFCS presents some differences with respect to LCS espe-
cially in the inference cycle; these differences introduces the necessity of a deeper
analysis comparing fuzzy architecture to the classical one.

The fuzzy inference cycle starts by classifying the input, usually real values,
computing the degree of matching of each variable to corresponding the fuzzy
sets. Then, fuzzy operators [11] are used to combine the matching degrees of
the different variables obtaining a matching degree for the state described by
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all the input variables. At this point, all the matching rules are triggered; each
one proposes an action with a weight that depends on the degree of matching of
the rule. The output comes from the aggregation [11] of all proposed weighted
outputs and the global output is defuzzyfied to a real value.

The keys of this process are input/output fuzzyfication/defuzzyfication, ob-
tained through the Input and Output Interface modules, and the fuzzy matching
executed in the Matching & Cover Detection modules. In the next parts of this
section, we describe the fuzzy implementations for the crisp modules previously
described, we do not present Genetic Algorithm module since, working on labels,
it does not differ from crisp one.

4.1 Input and Output Interface modules

The Input Interface module classifies the real-valued sensorial input in a fuzzy
perception of the environment. This perception is computed considering each
input variable configuration and using fuzzy operators to combine matching de-
grees. This interface combines the input fuzzy values (pairs of < I, y;(z) >) in
a fuzzy vector characterized by a global matching degree. Common operators
used to calculate the global matching degree are minimum (that makes a con-
servative choice) and product (that considers all the components), being both
T-norms [11] implementing a fuzzy logic conjunction.

The membership functions used in our implementation for input classifica-
tion are triangular or trapezoidal, overlapping in pairs, as shown in figure 1.
Using labels in definition of sets for the condition part, the main difference be-
tween crisp and fuzzy classifiers is the matching degree used by the fuzzy version
to compute rule pertinence in a particular configuration.

Menbership function are also used by the Output Interface module to com-
bine proposed actions in a unique output message. In the Output Interface
module the actions proposed by the selected classifiers are composed in a real-
valued output using methodology derived from fuzzy control. Classifiers in the
Match Set proposing the same action are aggregated by a fuzzy operator (T-
Conorm [11]) obtaining pairs < y, u(y) > whose elements are the output fuzzy
set and the corresponding matching degree. To defuzzify the proposed output
it is possible to implement the center of gravity (COG) method obtaining the
action A:

A Jy ) -dy
[ uly) - dy

A= M for the discrete case

Zv;’ w(yi)

where in the discrete case the output fuzzy sets are represented by singletons
(a common choice in real implementations).

for the continuous case

11
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Figure 5: Match Sets, Action Sets and selected classifiers for different sub-
populations.

4.2 Matching & Cover detection module

The Matching module selects classifiers in the Rule Base that match, by the
fuzzy labels, the real-valued states sensed by the Input Interface. We notice how
LFCS operate on sub-population of classifiers that match a different perception
generated by the fuzzy interface. In fact, the real value of an input variable can
be classified as belonging to at most two different fuzzy sets, so a configuration
of the environment can be classified by almost 2" state vectors, were n is the
number of variables forming that vector.

Classifiers selected by the the Matching module, form the Match Set, they
can be associated to sub-population in the Rule Base. Generalized classifiers
may belong to two or more sub-population in the Match Set (figure 5). Sub-
populations play a role in the output determination proportional to the matching
degree of the corresponding fuzzy state, in fact the matching degree of each
selected classifier is used by the output interface to combine the proposed actions
in a real valued output.

The main difference between LFCS and LCS implementation of Matching
module, is the presence of many sub-populations in the Match Set at the same
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time that have to cooperate in forming a unique output action. This pres-
ence of sub-population is the cause of the so-called cooperation vs. competition
dilemma [3]. In fact, classifiers belonging to the same sub-population of the
Rule Base have to compete to survive, but, at the same time they have to co-
operate with classifiers of other sub-population in forming a correct output. In
this paper we mainly focus on this problem and its correlation to the explo-
ration vs. exploitation dilemma proposing an analysis of their relationship in
the experimental section. The Cover Detection module acts exactly the same
for both LCS and FLCS.

4.3 Rule Evaluation module

Also in FLCS the policy applied to select rules has to deal with the exploitation
vs. exploration dilemma. As for LCS, it is possible to implement different
selection policies applying different criteria on the fitness value.

To evaluate classifiers, we consider rules proposing the same action as be-
longing to an Action Set like in the crisp version. The presence of many sub-
population in the Match Set generates different subpopulation in the Action Set;
the Rule Evaluation module selects a rule from each subpopulation proposing
it to the Output Interface module to be defuzzyfied.

As previously discussed the introduction of sub-population in the Rule Base
generates some problems to the learning process due to the cooperation vs.
competition dilemma. The learning algorithm as to search a correct combination
among local model of desired behaviour implemented by sub-population. The
need of learning also this coordination, implies to explore also this dimension
of the problem. We deeply discuss this difference and how exploration level
influences LCS and LFCS in section 5 with experimental results.

4.4 Credit Distribution module

As previously highlighted, the fuzzy version of Credit Distribution module has
to deal with the presence of sub-population in th Rule Base, distributing re-
inforcement to the rules proportionally to their contribution to the performed
action. Using the strength of a classifier to represent its fitness it is possible to
update it using the formula:

curTce

!
s'(er) = s(ee—1) + (re — s(ee—1)) - pastc,
This formula increments classifer’s fitness by a quantity proportional to the
difference between the present reinforcement and the past fitness, multiplied
by the contribution of the classifier to the actions just performed currc. and
weighted by the sum of past contributions pastc. [1] [3]. This process is needed
to take into account the nature of the fuzzy inferential algorithm, in which a
rule contributes to the global action proportionally to its degree of matching
with the current state. The current contribution currc, is a measure of how
much the action proposed by this rule has contributed to the action actually

13



done. It is computed by the following equation, in this formula c is the classifier
under examination, and C' is the set of triggering rules

p(c)
Y ecc 1(c)

At each rule activation, pastc. is updated adding the current contribution
currce to the old value of pastc., until a given threshold is reached and the
classifier has been tested enough. It is possible to apply the previously dis-
cussed formulas to the crisp algorithm Bucket Brigade modifying its four steps
as follows:

currc, =

e create the Action Set A! (i stands for the sub-population) with classifiers
proposing the chosen action a}

e compute bid value considering classifiers belonging to each sub-population
in the Action Set:

bid = Z b-currce(c) - s(c) 0<bk 1,
ViAVce Al

e reduce the strength s of each classifier ¢; belonging to A¢ according to

s'(ct) = (1 =b-currce(cy)) - s(cy) 0<b<k 1,

e distribute to classifiers in A | (i.e., previous sub-populations of the Ac-
tion Set) the strength subtracted to the classifiers in A{ and the reward.
To update the active classifiers’ strength it applies:

currc,
pastc,

Sl(thl) = S(thl) + - (bld+ Tt)

It is also possible to implement a fuzzy version for the Q-value updating formula:

CUrTC,
astc,

ql(ct) = Q(Ct) + ) O[(Tt + Y-MaTc, €A1 (q(ct+1)) - Q(Ct))

O0<a<1lAnO<Ly<]I

5 Experimental results

The application we select to analyze FLCS consist in learning a reactive be-
haviour for a mobile robot moving across a corridor. The learning activity is
done on a simulated model of the actual mobile robot CAT [3], which has a
car-like kinematics, is 700 mm long, 600 mm wide, and can run at a maximum
speed of 300 mm/sec. The maximum steering degree is 30° on each side, and
this is an important limitation in the maneuvering capability to be learnt. In the

14
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Figure 6: Starting positions during learning (above) and test (below) experi-
ments.

configuration we adopt for these experiments, CAT has 8 bumpers (i.e., on/off
contact sensors) all around its body, and 6 sonar sensors, covering the frontal
210°. Each sonar produces an ultrasonic wave and the time between emission
and detection of a reflected wave (i.e., Time of Flight - ToF) is measured. This
is proportional to the distance from the closer surface orthogonal to one of the
rays of a 60° cone originating from the sonar. The range is between 200 and
3,240 mm. The distance obtained by each sonar is affected by noise, uniformly
distributed in the interval £5% of the maximum range. This model is rough,
but realistic, and corresponds to a couple of two sensors available on the market,
each having a detection cone of about 30°. Data from sonar is interpreted either
in terms of fuzzy sets, or in terms of crisp intervals, as previously described in
figure 1. Notice the special singleton value used to represent a characteristic
feature of sonars: when no echo returns within the maximum ToF, the sensor
gives a specific out of range value. This happens either when no object is within
the range, or when all the objects within the range deflect the ultrasonic wave
away from the sensor, due to the relative direction of their surfaces.

In our experiments, the perception of the environment state is thus repre-
sented by six variables, each corresponding to a distance measured by one sonar
sensor, and one boolean variable, which becomes true when any of the bumpers
is activated. The only output variable is steering, represented by singletons for
seven possible choices: —10°, -20°,-30°,0°,+10°,420°,430°. and velocity is
fixed to 300 mm/s forward. In the experiments presented here, we consider
the Q-Learning version of Credit Distribution module. To test relationship
between exploration vs. exploitation dilemma and learning problems due to
sub-population in the Match Set we use Random choice as exploration strat-
egy, analyzing the influence of different values of parameter N. In the Genetic
Module we have excluded generalization, and, with it, the need for crossover:
the classifiers are generated only by cover detection and mutation is limited to
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Figure 7: Crisp (left) and Fuzzy (right) performances in 27 test trials.

the consequent part. The number of classifiers in a sub-population matching a
state is inversely proportional to the top performance of the sub-population: the
worst classifiers matching the current state are deleted when the sub-population
performance increases.

The reinforcement function r for the proposed task, is the same in all the
experiments, and it is linear with orientation and distance from the center of
corridor; a punishment is given when robot is bumping on the walls. Each
learning trial lasts 500 control steps, and sets of trials to be compared with each
other have the same randomization seed.

The first experiment consists of trials sequentially starting from 11 different
positions; each sequence is repeated 10 times for a total of 110 trials and 55,000
control steps (figure 6(a)). From the set of classifiers we have at the end of the
learning process, we consider only the best classifiers for each sub-population
that have been tested enough. We evaluate the performance of the controller
they implement in 27 test trials, lasting 700 control steps each, starting from
the 11 positions of learning session and from 16 intermediate ones (figure 6(b)),
in order to test the generality of the learnt controller [7]. To have a measure of
the learnt behaviour’s performance we evaluate it with the same reinforcement
function used during the learning experiment.

In figure 7 we show the instantaneous performance, over the above mentioned
27 trials, of a learnt controller whose control step lasts 600 ms. The behavior is
almost satisfactory for both LCS and LFCS, although the latter shows a better
behavior, since its performance over the 27 trials is higher, and it does not
bring the robot against the walls, as it happens with LCS when starting from
position 9.

A second experiment tests the influence of using fuzzy logic in knowledge
representation from exploration vs. exploitation point of view. We analyze the
same experimental setting were the learning trials start every time from the
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Trial (FOO Step)

Figure 8: Crisp (above) and Fuzzy (below) performance with 20% probability
of random choice (N = 5).

Trial (700 Step)

Figure 9: Crisp (above) and Fuzzy (below) performance with 50% probability
of random choice (N = 2).

central position (the 1*h). We expect the agent to learn a general behaviour
by exploring autonomously the unknown environment by a random choice of
classifier in the Match Set. Our purpose is to understand limitation introduced
in exploration and generalization by the cooperation vs. competition dilemma.

Observing results of this second experiment, we can highlight how FLCS
needs more exploration to deal with the complexity of the learning process due
to presence of cooperation vs. competition problems. In figure 8 are represented
the performances of LCS and LFCS using the same exploration level of first ex-
periment: N =5 in random choice of strongest classifier in the Match Set. The
performance with respect to previous experiment reflect a lack of generalization
due to the fixed starting position. Moreover, it is possible to notice, in figure &,
how crisp LCS obtains better results with this level of exploration than FCLS.

To test how exploration level influence the learning process in LFCS we re-
peated the same experiment using N = 2 in the random choice policy. As plots
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in figure 9 reflect, in this case LCS and FLCS results do not differ substantially.
Giving more exploration to crisp LCS causes worst performances according to
the exploration vs. exploitation dilemma. Moreover, comparing figure 8 above
(LCS with N =5 in random choice) and figure 9 below (LFCS with N = 2 in
random choice) it is possible to notice that crisp LCS and FLCS obtain quali-
tatively the same generalization performances when applying more exploration
to FLCS.

6 Conclusion

In this paper we presented an approach to define Learning Fuzzy Classifier
Systems (LFCS), based on the extension of architecture and algorithms defined
for crisp Learning Classifier Systems (LCS). We discussed some of the properties
of this new class of learning systems, the problems that a fuzzy knowledge
representation introduces in learning, and the performance quality that can be
obtained. We have used a tool implementing the described architecture to learn
reactive behavior for an autonomous mobile agent avoiding obstacles and moving
across a corridor. The performance analysis of learnt behavior highlights some
interesting features concerning complexity of the learning process and LFCS
performances.

The need of learning also cooperation among fuzzy classifiers produces a
larger search space where the algorithm should find the correct combination
of triggering classifiers. To face this problem we suggest to increase the level
of exploration in selection of classifiers in the Match Set. We tested learnt
controllers in the environment and we noticed that performances deriving from
best fuzzy controllers are better than ones deriving from best crisp controllers.

We do not look at the presented architecture as an isolated experiment on
FLCS; we consider this paper also as a proposal to implement modular learning
systems; modularity makes possible to isolate module features to understand
their interplay in LCS learning process. We also suggest trying new imple-
mentations of FLCS in a more complex framework: the Genetic Algorithm
module could operate considering also the matching degree of classifiers and the
Credit Distribution module could use implementations of other RL algorithm
as TD()) [22].
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