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Probability for Dataminers
— Probability Basics —




Probability and Boolean Random Variables

Boolean-valued random variable A IS a Boolean-valued random variable if A
denotes an event, and there is some degree of uncertainty as to
whether A occurs.

®* Examples
© A =The US president in 2023 will be male
° A = You wake up tomorrow with a headache
© A = You like the “Gladiator”
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Probability and Boolean Random Variables

Boolean-valued random variable A IS a Boolean-valued random variable if A
denotes an event, and there is some degree of uncertainty as to
whether A occurs.

Probability of A “the fraction of possible worlds in which A is true”

Event space of all Worlds in which
possible worlds A is true
[Its area is 1] [P(A)= area of oval]

Note: this is one of the possible definition. We won’t go into the phylosophy of it!
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Probability Axioms

* 0<PA <1
® P(true)=1;P(false)=0
® P(AVB)=P(A)+ P(B)— P(ANB)

Event space of all Worlds in which
possible worlds A is true
[Its area is 1] [P(A)= area of oval]

/
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Probability Axioms

* 0<PA<LI1
® P(true)=1;P(false)=0
® P(AVB)=P(A)+ P(B)—- P(ANAB)

The Area of A can't get
any smaller than 0
[No world could ever have A true]

~
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Probability Axioms

* 0<PA<LI1
® P(true)=1;P(false)=0
® P(AVB)=P(A)+ P(B)—- P(AAB)

The Area of A can't get
any bigger than 1
[All worlds will have A true]

/
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Probability Axioms

* 0<PA<LI1
® P(true)=1;P(false)=0
® P(AVB)=P(A)+ P(B)—- P(ANAB)

P(i)\ P(/Ajnd Bip}B)
N— /1 /
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Theorems From the Axioms (1)

Using the axioms:
® P(true)=1;P(false)=0
®* P(AVB)=P(A)+ P(B)— P(AAB)

Proove: P(~ A) = P(A) =1— P(A)

|
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Theorems From the Axioms (1)

Using the axioms:
® P(true)=1;P(false)=0
®* P(AVB)=P(A)+ P(B)— P(AAB)

Proove: P(~ A) = P(A) =1— P(A)

true = AV A
P(true) = P(AVA)
P(A)+ P(A) — P(ANA)
= P(A)+P(A) — P(fal se)
1 = PA)+PA)-0
1 - P(A) = P(A)
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Theorems From the Axioms (ll)

Using the axioms:
® P(true)=1;P(false)=0
®* P(AVB)=P(A)+ P(B)— P(AAB)

Proove: P(A) = P(AAB)+ P(AA B)

|
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Theorems From the Axioms (ll)

Using the axioms:
® P(true)=1;P(false)=0
®* P(AVB)=P(A)+ P(B)— P(AAB)

Proove: P(A) = P(AAB)+ P(AA B)

A = AANtrue
= AA(BVB)
= (AAB)V(AAB)
P(A) = P(AAB)V(AAB)
= P(AANB)+ P(A P((ANB)A (AN B))

)
( NB) -
= P(AANB)+ P(AAB)— P(fal se)
= P(AAB)+ P(AAB)
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Multivalued Random Variables

Multivalued random variable A IS a ranom variable of arity & if it can take on
exactly one values out of {vy, vy, ..., v}

We still have the probability axioms plus
OP(A:UZ/\A:’UJ):O"E’L#]
.P(A:?Jl\/A:”UQ\/...\/A:’Uk):l

|
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Multivalued Random Variables

Multivalued random variable A IS a ranom variable of arity & if it can take on
exactly one values out of {vy, vy, ..., v}

We still have the probability axioms plus

° P(A:Uz'/\A:’Uj):O If +#£ 7

- P(A:?Jl\/A:UQ\/...\/A:’Uk):l
Proove: P(A=v VA= V...VA=1v;)=3""_ P(A=uy)
Proove: Z"le A = wg ) = 1l

Proove: P(BA[A=vVA=vV...VA=1]) =" P(BAA=ujy)

Proove: P(B) = 2?21 P(B N A = vj)

|
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Conditional Probability

Probability of A given B: “the fraction of possible worlds in which B is true
that also have A true”

|
Lecture Notes on Machine Learning — p.8/24



Conditional Probability

Probability of A given B: “the fraction of possible worlds in which B is true
that also have A true”

F="Having the flu"
H="Having an headache"
P(F)=1/8

- P(H|F)=1/25

\

P(H)=1/4

L—"

\
\
\

“Sometimes I've the flu and sometimes I've a headache, but half of the
times I'm with the flu I've also a headache!”

|
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Conditional Probability

Probability of A given B: “the fraction of possible worlds in which B is true
that also have A true”

F="Having the flu"

H="Having an headache"
P(F)=1/8

- P(H|F)=1/25

\

P(H)=1/4

L—"

P(H|F) Num. of worlds with FandH  P(H A F)
B Num. worlds with F -~ P(F)
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Probabilistic Inference

One day you wake up with a headache and you think: “Half of the flus are
associated with headaches so | must have 50% chance of getting the flu”.

F="Having the flu"
H="Having an headache"
P(F)=1/8

/ - P(H|F)=1/2 E

P(H)=1/4

L—"

Is this reasoning correct?

|
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Probabilistic Inference

One day you wake up with a headache and you think: “Half of the flus are
associated with headaches so | must have 50% chance of getting the flu”.

F="Having the flu"
H="Having an headache"
P(F)=1/8

P(H|F)=1/25

L—"

\

P(H)=1/4

L—"

_ P(FANH) PHAF) P(H|F)«P(F) 1/2x1/8
P(FIH) = P(H) P(H) P(H) - 1/4 = 1/4
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Theorems that we used (and will use)

In doing the previous inference we have used two famous theorems:
® Chain rule
P(ANB)=P(A|B)P(B)
® Bayes theorem
P(ANB) P(B|A)P(A)

PAB) = =pm = P

|
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Theorems that we used (and will use)

In doing the previous inference we have used two famous theorems:

® Chain rule

P(A A B) = P(A|B)P(B)

® Bayes theorem

P(A A B)
P(B)

P(A|B) =

We can have more general formulae:

- P(B|A)P(A)
* P(A|B) = P(B|A)P(A)+P(B|A)P(A)

A A
* P(AIBAX) = P<BIPA(Q§(<) 49.9

Y A P(B|A=vy)P(A=vy)

P(B|A)P(A)

P(B)
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Independent Variables

Independent variables: Assume A and B are boolean random variables; A
and B are independent (denote it with A | B) if and only if:

P(A|B) = P(A)

|
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Independent Variables

Independent variables: Assume A and B are boolean random variables; A
and B are independent (denote it with A | B) if and only if:

P(A|B) = P(A)

Using the definition:
® P(A|B)=P(A)
Proove:P(A N B) = P(A)P(B)
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Independent Variables

Independent variables: Assume A and B are boolean random variables; A
and B are independent (denote it with A | B) if and only if:

P(A|B) = P(A)

Using the definition:
® P(A|B)=P(A)
Proove:P(A N B) = P(A)P(B)

P(AAB) = P(A|B)P(B)

|
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Independent Variables

Independent variables: Assume A and B are boolean random variables; A
and B are independent (denote it with A | B) if and only if:

P(A|B) = P(A)

Using the definition:
® P(A[B) = P(A)
Proove:P(B|A) = P(B)
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Independent Variables

Independent variables: Assume A and B are boolean random variables; A
and B are independent (denote it with A | B) if and only if:

P(A|B) = P(A)
Using the definition:
* P(A|B)=P(A)
Proove:P(B|A) = P(B)
PBlA) = © (Alfil])) (B)
_ P(A)P(B)
B P(A)
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Unsupervised L earning
— Density Estimation —




The world is a very unceratin place!

Thus there have been attempts to use different methodologies for dealing
with world uncertainty:

® Probability theory

® Fuzzy logic

® Three-valued logic

® Dempster-Shafer

® Non-monotonic reasoning

|
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The world is a very unceratin place!

Thus there have been attempts to use different methodologies for dealing
with world uncertainty:

® Probability theory

® Fuzzy logic

® Three-valued logic

® Dempster-Shafer

® Non-monotonic reasoning

In the next we’ll focus on Probabilistic Modelling

|
Lecture Notes on Machine Learning — p.13/24



“Why a probabilistic approach?”

A probabilistic model of the data can be used to:

®* Make inference about missing inputs

® Generate prediction/fantasies/imagery

® Make decisions which minimise expected loss
®* Communicate the data in an efficient way
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“Why a probabilistic approach?”

A probabilistic model of the data can be used to:

® Make inference about missing inputs

® Generate prediction/fantasies/imagery

® Make decisions which minimise expected loss
® Communicate the data in an efficient way

Statistical modeling is equivalent to other views of learning:
® Information theoretic: finding compact representations of the data

® Physical analogies: minimising free energy of a corresponding
statistical mechanical system

|
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The Joint Distribution

How to make a joint distribution of M variables:
1. Make a truth table listing all combination of values
2. For each combination state/compute how probable it is
3. Check that all probabilities sum up to 1

|
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The Joint Distribution

How to make a joint distribution of M variables:
1. Make a truth table listing all combination of values
2. For each combination state/compute how probable it is
3. Check that all probabilities sum up to 1

Example with 3 boolean variables A, B and C.

i
vo)
(@]

Prob

.30
.05
.10
.05
.05
.10
.25

HFHEREPROOOO
HRPOOKRKHOO
HOHORFRORO
'ofeNoloNoloRoNa)

.10
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Using the Joint Distribution (1)

A|B|C|Prob
0/0|0|0.30
0[0|1]0.05
0[1(0|0.10
0|1|1|0.05
1, 0]0]0.05
1, 0]1]|0.10
1[{1]0]0.25
1[1]1]0.10

You can use it to compute the probability of logical expression:

P(E) = > P(row)

row matching E

|
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Using the Joint Distribution (1)

A|B|C|Prob
00| 0]0.30
0(0|1]0.05
0(1]0(0.10
0(1]|1]0.05
1/0[0|0.05
1/0(1|0.10
1/1(0]0.25
1]11]1]0.10

You can use it to compute the probability of logical expression:
° P(A)=0.05+0.10 + 0.25 4+ 0.10 = 0.6
® P(AANB)=0.25+0.10=0.35
* P(AvVC)=0.30+0.05+0.10 + 0.05 + 0.05 + 0.25

|
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Using the Joint Distribution (11)

A|B|C|Prob
00| 0]0.30
0(0|1]0.05
0(1]0(0.10
0(1]|1]0.05
1/0[0|0.05
1/0(1|0.10
1/1(0]0.25
1]11]1]0.10

Now you can use it for making inference:

P(E, A E;)  2-row matching E; and E, £'(row)

P(E1|Es) = =
P(E) 2_row matching E, £'(row)

|
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Using the Joint Distribution (11)

A|B|C|Prob
00| 0]0.30
0(0|1]0.05
0(1]0(0.10
0(1]|1]0.05
1/0[0|0.05
1/0(1|0.10
1/1(0]0.25
1]11]1]0.10

Now you can use it for making inference:

* P(A|B) = (0.25 + 0.10)/(0.10 + 0.05 + 0.25 + 0.10) = 0.35/0.50 = 0.70
° P(C|AA B) = (0.10)/(0.25 + 0.10) = 0.10/0.35 = 0.285

* P(A|C) = (0.05+0.05)/(0.05+ 0.05+0.10 +0.10) = 0.10/0.30 = 0.333

|
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Setting up a Joint Distribution

Now we know what they are and how to use them, but where do Joint

Distributions come from?
* Expert Humans

® Simpler probabilistic facts and some algebra

© Suppose you knew

0.7
0.2
0.1
0.1

P(C|AA ~ B) = 0.8
P(C|~AAB) =0.3
P(C| ~ AN ~ B) = 0.1

Then you can automatically compute the JD using the chain rule

® | earn them from data!
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Joint Distribution Estimator

A Density Estimator learns a mapping from a set of attributes to a probability
distribution over the attributes space

|
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Joint Distribution Estimator

A Density Estimator learns a mapping from a set of attributes to a probability
distribution over the attributes space

Our Joint Distribution learner is our first example of something called
Density Estimation

® Build a Joint Distribution table for your attributes in which the
probabilities are unspecified

® The fill iIn each row with

B(row) records matching row
~ total number of records

|
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Joint Distribution Estimator

A Density Estimator learns a mapping from a set of attributes to a probability
distribution over the attributes space

Our Joint Distribution learner is our first example of something called
Density Estimation

® Build a Joint Distribution table for your attributes in which the
probabilities are unspecified

® The fill iIn each row with

B(row) records matching row
~ total number of records

How can we evaluate it?

|
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Evaluating a Density Estimator

We can use likelihood for evaluating density estimation:

® Given a record x, a density estimator M tells you how likely it is
P(x|M)

® Given a dataset with R records, a density estimator can tell you how
likely the dataset is under the assumption that all records were
iIndependently generated from the density estimator’s joint

distripution A )
P(dataset) = P(x; Axa A ... Axg|M) = [, P(xx| M)

|
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Evaluating a Density Estimator

We can use likelihood for evaluating density estimation:

® Given a record x, a density estimator M tells you how likely it is
P(x|M)

® Given a dataset with R records, a density estimator can tell you how
likely the dataset is under the assumption that all records were
iIndependently generated from the density estimator’s joint
distribution

P(dataset) = P(x; Axa A ... Axg|M) = [, P(xx| M)

Since likelihood can get too small we usually use log-likelihood:

R R
log P(dataset) = H P(xp|M) = "log P(xx| M)
k=1 k=1

|
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Joint Distribution Summary

Now we have a way to learn a Joint Density estimator from data
® Joint Density estimators can do many good things

© Can sort the records by probability, and thus spot weird records
(e.g., anomaly/outliers detection)

© Can do inference: P(FE1|E-) (e.g., Automatic Doctor, Help Desk)
© Can be used for Bayes Classifiers (see later)

|
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Joint Distribution Summary

Now we have a way to learn a Joint Density estimator from data
® Joint Density estimators can do many good things

© Can sort the records by probability, and thus spot weird records
(e.g., anomaly/outliers detection)

© Can do inference: P(FE1|E-) (e.g., Automatic Doctor, Help Desk)
© Can be used for Bayes Classifiers (see later)

® Joint Density estimators can badly overfit!

© Joint Estimator just mirrors the training data
© Suppose you see a new dataset, its likelihood is going to be:
log P(new dataset|M) = Y1 | log P(x;|M) = —c
if 3k : P(xx|M) =0

|
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Joint Distribution Summary

Now we have a way to learn a Joint Density estimator from data
® Joint Density estimators can do many good things

© Can sort the records by probability, and thus spot weird records
(e.g., anomaly/outliers detection)

© Can do inference: P(FE1|E-) (e.g., Automatic Doctor, Help Desk)
© Can be used for Bayes Classifiers (see later)

® Joint Density estimators can badly overfit!

© Joint Estimator just mirrors the training data
© Suppose you see a new dataset, its likelihood is going to be:
log P(new dataset|M) = Y1 | log P(x;|M) = —c
if 3k : P(xx|M) =0

We need something which generalizes! — Naive Density Estimator

|
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Naive Density Estimator

The nailve model assumes that each attribute is distributed independently
of any of the other attributes.

* Let x[i] denote the " field of record x.

® The Naive Density Estimator says that
x|i] L {x[1],x[2],...,x[t —1],x[t + 1],...,x[M]}

|
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Naive Density Estimator

The nailve model assumes that each attribute is distributed independently
of any of the other attributes.

* Let x[i] denote the " field of record x.
® The Naive Density Estimator says that
x[i] L {x[1],x[2],...,x[i — 1],x[i + 1],...,x[M]}
Example: suppose to randomly shake a green dice and a red dice
® Dataset 1: A =red value, B = green value
® Dataset 2: A =red value, B = sum of values
®* Dataset 3: A = sum of values, B = difference of values

Which of these datasets violates the naive assumption?

|
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Naive Density Estimator

The nailve model assumes that each attribute is distributed independently
of any of the other attributes.

* Let x[i] denote the " field of record x.

® The Naive Density Estimator says that
x|i] L {x[1],x[2],...,x[t —1],x[t + 1],...,x[M]}

From a Naive Distribution you can compute the Joint Distribution:
® Suppose A, B,C, D are independently distributed

P(ANBANCAD) = 7

|
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Naive Density Estimator

The nailve model assumes that each attribute is distributed independently
of any of the other attributes.

* Let x[i] denote the " field of record x.

® The Naive Density Estimator says that
x|i] L {x[1],x[2],...,x[t —1],x[t + 1],...,x[M]}

From a Naive Distribution you can compute the Joint Distribution:
® Suppose A, B,C, D are independently distributed

P(ANBANCAD) = P




Learning a Naive Density Estimator

Suppose x|[1],x[2],...,x|M] are independently distributed

® Once we have the Naive Distribution, we can construct any row of the
implied Joint Distribution on demand

P(x[1] = u1,x[2] = ug,...,x[M] = up) = | | P(x[k] = up)

® We can do any inference!

|
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Learning a Naive Density Estimator

Suppose x|[1],x[2],...,x|M] are independently distributed

® Once we have the Naive Distribution, we can construct any row of the
implied Joint Distribution on demand

P(x[1] = u1,x[2] = ug,...,x[M] = up) = | | P(x[k] = up)

®* We can do any inference!

But how do we learn a Naive Density Estimator?

|
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Learning a Naive Density Estimator

Suppose x|[1],x[2],...,x|M] are independently distributed

® Once we have the Naive Distribution, we can construct any row of the
implied Joint Distribution on demand

P(x[1] = u1,x[2] = ug,...,x[M] = up) = | | P(x[k] = up)

®* We can do any inference!

But how do we learn a Naive Density Estimator?

AL ~number of record for which x[i| = u
total number of records
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Joint Density vs. Naive Density

What we got so far?

® Joint Distribution Estimator
© Can model anything

© Given 100 records and more than 6 Boolean attributes will
perform poorly

© Can easily overfit the data

® Naive Distribution Estimator
© Can model only very boring distributions
© Given 100 records and 10,000 multivalued attributes will be fine
© Quite robust to overfitting

|
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Joint Density vs. Naive Density

What we got so far?

® Joint Distribution Estimator
© Can model anything

© Given 100 records and more than 6 Boolean attributes will
perform poorly

© Can easily overfit the data

® Naive Distribution Estimator
© Can model only very boring distributions
© Given 100 records and 10,000 multivalued attributes will be fine
© Quite robust to overfitting

So far we have two simple density estimators, in other lectures we’ll see
vastly more impressive ones (Mixture Models, Bayesian Networks, Density
Trees, Kernel Densities and many more).

|
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