
Publish/Subscribe Middleware for Robotics:

Requirements and State of the Art

Matteo Matteucci

January 13, 2003

Abstract

Autonomous robotic systems become more complex and based on a
distributed architecture since the introduction of the multi–agent paradigm.
To tackle the increased complexity of such systems, researchers have
started to apply software engineering tools in designing and integrating
the modules that compose a modern robotics apparatus. Heterogeneity
and efficiency are only two of the key issues in choosing or developing the
integration technology for multi–robot systems. In this work, we propose
the publish/subscribe model as the proper communication model in this
field, we describe the issues related to the use of such kind of middle-
ware in autonomous robotics, and we provide a compared analysis of the
publish/subscribe middleware currently used in robotics applications.

1 Introduction

Distributed computing is quickly moving to a new conception of computer
interaction. The new scenario of ubiquitous and pervasive computing [44]
is leading to a loose peer–to–peer model, in which each processing unit
becomes a node of a large and complex network [59].

A similar trend characterizes also automation and industrial robotics
systems. The new wave of smart–sensors and smart–actuators [2] under-
lines how, even in the industrial environment, the outcome in having more
computational power distributed on the field is highly remarkable. In this
scenario, hardwired electronic solutions and handcrafted communication
protocols on slow serial lines, are leaving their place to flexible processing
units networked through broadband infrastructures, and communicating
via standard protocols, both at physical and at logical levels. Recently
proposed communication standards over specific field–bus systems prove
such a trend [54, 74].

In a similar way, autonomous robotic systems, particularly those in-
volving multiple robots and environmental sensors, are becoming increas-
ingly distributed and networked. This trend results in the need of carefully
considering the issue of integration even in robotics, and this happens both
at software level and at the hardware level. Each single device (e.g., sen-
sor, controlled actuator, controller, CPU, DSP, etc.), that used to be a

1



functional part of a whole, now starts being an active and, in some way,
independent member. People involved in robotics are getting conscious
that developing multi–robot systems might require tools for supporting
the developers in dealing with integration and communication issues [30].

Few robotic control architectures already provide a sophisticated API,
but it seems that a lot of robot programmers ignore many of the features
provided by such frameworks, relying instead on a more primitive “socket
to the base” type of interface. Given these premises, a question become
relevant: can we depict a proper framework for integration in distributed
robotics systems that could help in a natural way the development of these
applications? In this paper we are interested in investigating whether a
publish/subscribe middleware can alleviate the unnecessary complexities
of using low–level tools while still preserving system performance.

The present work has a twofold goal. First of all, we are interested in
proposing the publish/subscribe model as an expressive and efficient com-
munication substrate for distributed robotics applications. In the second
place, we want to propose a set of requirements for publish/subscribe
middlewares in order to be effectively applied in robotics. A qualitative
analysis of inter–process communication toolkit for robotics has been done
by Gowdy in [32], but this work does not consider the publish/subscribe
paradigm and the requirements proposed for the toolkits differ noticeably
from ours. Here, to show in what extent the publish/subscribe middle-
wares currently applied respect the requirements we propose, we reclassify
few of the systems described by Gowdy in his report1 and we add few oth-
ers.

In Section 2 we describe a reference scenario for autonomous robotics
applications, and in Section 3 we introduce the main characteristics of the
data flow with respect to the robotics scenario. The main models for data
exchange are reported in Section 4 and the main characteristics required
for a publish/subscribe middleware to be applied in robotics are described
in Section 5. In Section 6 we analyze some of the middleware actually used
in this kind of applications and a brief discussion is presented in Section 7.
Conclusions and future works are described in Section 8.

2 A New Reference Scenario

Since the first proposals concerning multi–robot systems were issued, top-
ics such as work sharing, resource allocation, etc. became part of the
roboticist’s glossary [14]. This became even more common when multi–
sensor systems appeared, and when robot swarms were proposed as a
solution to complex robotic problems [8, 64].

Furthermore, many researchers are moving from the old conception
of considering the sensing system of a robot as a concentration of de-
vices, all physically located in the same place (i.e., on the robot’s body)
to a distributed sensing paradigm. Usually, robots are employed in an
environment that, for several other reasons, is already equipped with a
communication network and sensors (e.g., the cameras of a surveillance

1Due to the focus of this research, we will report only the systems that use the pub-
lish/subscribe model for information exchange.

2



Figure 1: Possible application scenario in a department environment with two
mobile robots: (1) Robots, (2) MS Windows desktop PC with surveillance web-
cam, (3) Linux workstation for robot supervision and gateway between ethernet
and wireless network, (4) LAN, (5) Gateway to the Internet, (6) Acoustic Sensor
available on the LAN

system), and they have to interact with other robots (co)operating in the
same area (e.g., office, hospitals, etc.).

In Figure 1 we depict an example of the scenarios we are interested
in. In such environment, two robots, provided with radio links, interact
with several other computers with different operating systems connected
through a LAN, and with two different “smart” sensors one acoustic and
the other visual. In this scenario, it is also possible to include some
“almost sensorless” robots with very small onboard computing power,
remotely connected and capable of taking advantage of the whole power
of the community.

While several authors [4, 43] have pointed out the analogy between
robot sets and live beings (e.g., simple cells, swarms of insects, colonies),
in [15] we proposed to consider each single robot as a community of devices,
deeply connected with the other communities (i.e., other robots) and the
environment in which they are embedded.

Considering robots as communities of devices that are not necessarily
attached to the same physical body allows many new interesting functions
to be implemented. This affects sensors (i.e., a robot can take advantage
of surveillance cameras that observe the environment where it is working
as a means for self–localization), but can also affect processing power, al-
lowing processing units “outside” the robot body to co–operate, offering
their services when and where required. From this assumption, it immedi-
ately follows that considering a group of electronic devices as a community
requires a common communication middleware as a mean for integration.
However, if we consider the way devices interact with each–other (e.g., se-
rial/parallel connections, networking physical media, wireless and satellite

3



links, visual and acoustic signalling, etc.), it would be really inefficient to
force all the communication flows to use the same protocol, or the same
transport means. This holds true especially in the autonomous robotic
field, where sensors and actuators may be interconnected in different ways.

3 Communication in Robotics

Given the scenario proposed in the previous section, it is clear how one of
the key issues in distributed robotics, where several physically distributed
devices (i.e., sensors, actuators, teams of mobiles robots, man–machine
interfaces, etc.) interact to achieve a common task in an effective way, is
data exchange. In the following we report some of the main character-
istics of data flows in this scenario in order to depict the most suitable
communication model for device communities.

• Computations are mostly event–driven, that is, execution is trig-
gered by the notification of some event happening in a reactive way.
For instance, a collision–avoidance plan may need to be executed as
soon as a new obstacle is detected, but only if such an obstacle is
detected.

• A significant portion of the event flow has a limited lifetime and
the requirements in term of reliability of the communication may
depend on its source or on its content. Considerable overhead can
be avoided using a data transfer paradigm that exploits these facts.
For instance, with many sensor readings, a limited loss of events is
often not critical when event notification is an idempotent operation
and when new updates simply replace old values.

• There are often multiple sources for the same type of information
and similarly there can be many consumers. For instance, a robot
command might be generated by an autonomous control module as
well as by a tele–operation module. Similarly, a physical robot and
a simulator may be both consumers of “command–data”.

• The network of data producers and consumers may not be known in
advance and may change dynamically as well as the kind of informa-
tion requested/produced in the network. For instance, force–level
measurements, normally used only by a low–level controller, may be
required for a limited amount of time by a monitoring device. More-
over, a new sensor could be added at any time or could produce data
only if active sensing is required.

• Most data flow may be anonymous. For instance, producers of the
sensorial information can usually be unaware of who is reading them.
Again, considerable overhead can be avoided using a data transfer
paradigm that exploits these characteristics.

• Data exchange is often time–critical. For control purposes data must
be transferred from source to destination with minimum delay or, at
least, with a certain predictability (i.e., guaranteed delivery, deadline
exceptions notifications, best effort, etc.)

4



A communication middleware for robotics applications should support
in a natural way the implementation of these types of information flow. In
addition, the communication system should be able to operate on read-
ily available hardware and be portable across several architectures and
operating systems.

4 Frameworks for Information Exchange

A communications framework provides a model of information exchange
to the applications that communicate using it. The success of a spe-
cific framework depends on how natural and efficient is the model it pro-
vides for a given application [49]. While each framework has its own
trade–off characteristics, and cannot be appropriate for all applications,
several frameworks have been proposed for distributed information ex-
change: shared memory, request/response (a.k.a. Client/Server), and
publish/subscribe. In the next paragraph we’ll briefly describe these
paradigms underlining their pros and cons from the point of view of a
program of a robotics application.

4.1 The Shared Memory Model

This model presents the illusion that there is a shared global memory
where data used by different applications is stored. Communication oc-
curs by writing into and reading from this global memory (see Figure 2).
In the shared memory model any change must be seen simultaneously and
consistently by all the peers. This is a powerful and familiar model be-
cause it allows the programmers to design the applications as if it was not
distributed. Algorithms and programs developed for non–distributed sys-
tems can therefore be ported to a distributed environment with a limited
amount of changes.

The attractiveness of this model has generated substantial research [6,
42, 65]. The appearance of a true physical shared memory on a dis-
tributed system can only be achieved by the operating system, and sev-
eral research operating systems (e.g., the V Kernel [16], Amoeba [70])
provide these facilities. A similar, but more easy to implement, model is
the shared data–object model. In this model, shared data is encapsulated
in objects or other structures and accessed through atomic operations on
those objects. This abstraction can be provided by the operating system
as in Clouds [21] and Chorus [61], by a language with a run–time sys-
tem as in Linda [1], or by dedicated environments such as Distributed
Blackboards [36].

Despite its ease of use, the shared memory model is not a natural
paradigm for many applications, especially in the robotic field, since it is
difficult to develop event–driven applications, react to data changes, and
synchronize or wait for those changes using such model. The requirement
that all participants maintain a consistent view of memory makes mem-
ory updates expensive and unpredictable in their delay, and such need
for synchronization often implies a centralized system thus reducing the
scalability of this model.

5



Middleware

Shared Memory

read/write

read/write

read/write

UpDate

Figure 2: The Shared Memory Model

4.2 The Request/Response Model

In the request/response model, information exchange occurs by issuing
requests and waiting for corresponding responses; examples of this kind
of exchanges are client/server queries and remote method invocation.

The client/server model is asymmetric and intended for master/slave
type queries (see Figure 3). A client (master) issues a request and waits
for the response from the server. The server (slave) is normally idle wait-
ing for requests from the clients. This model is very popular and has been
used to implement file systems [69], window systems [50], and distributed
databases [22]. Suites of protocols and supporting software have been
developed which realize such model, notably External Data Representa-
tion (XDR) [45] and Remote Procedure Calls (RPC) [46]. However the
client/server model has several drawbacks for robotics applications. The
client blocks while waiting for the response and cannot issue concurrent
requests or execute during the elapsing time. Two messages are required
to receive a certain data (i.e., the request and the response) increasing the
latency and diminishing throughput of the information flow. Finally, it is
also difficult for a server to notify an event to a client. These shortcom-
ings have been recognized and addressed in other fields by augmenting the
basic client/server model with the introduction of Asynchronous RPC [3]
and other mechanisms [5].

The remote methods invocation model extends object–oriented pro-
gramming to a distributed environment. Objects interact by exchang-
ing messages unaware of their physical location. In this exchange, the
object–to–object relationship is symmetrical (the sender and receiver roles
are specific to each invocation). To locate an object or a service, a
run–time system (or the operating system) must maintain a directory
of the available services, objects and/or interfaces. Several standards
such as Sun’s RMI [47], Object Management Group’s CORBA [34], and
Microsoft’s DCOM [23] are in use to define standard object interfaces,
data–representations, and invocation methods in order to communicate
between different machines and applications from multiple vendors.

6



Middleware

request(srv1,A)

request(srv1,A)
response(A)

srv1 srv2

request(srv1,B)

request(srv1,B)
response(B)

request(srv2,C)

response(B)
response(A)

response(C)

request(srv2,C)
response(C)

Figure 3: The Request/Respense Model

Despite its power, the request/response model realizes the concept of
a synchronous exchange where one request is followed by its response and
there is a strong coupling between the client and the service provider. For
this reason, this model is inappropriate for applications where most of the
event flow is one–way, one–to–many, computation is event–driven, and
there is a dynamic structure of producers and consumers of information.

4.3 The Publish/Subscribe Model

In this model, data providers publish data and consumers subscribe to the
information they require, receiving updates from the providers as soon
as this information has been published. This paradigm is based on the
notion of event. Components interested in some class of events “subscribe”
expressing their interests. Components providing information “publish”
it to the rest of the system as event notification. This model introduces
a decoupling between producers and consumers through the fact that
publishers and subscribers do not know each other: publish/subscribe
operations, and in particular the delivery of an event notification to all
the subscribers, are mediated by a component, the event dispatcher, whose
architecture can be either centralized or distributed (see Figure 4).

This model offers significant advantages in situations where data trans-
ferred corresponds essentially to time–changing values of an otherwise con-
tinuous signal (e.g., sensed data, control signals, etc.). A single subscrip-
tion replaces a continuous stream of requests and the data is transferred
with minimum delay since the exchange is one way and asynchronous.
The publish/subscribe model is also notification–based and this is very
beneficial when a system needs to monitor a great number of perhaps in-
frequent events, while in a client/server model or shared memory model,
the monitoring process must continuously poll for possible changes.

One–to–many communications are supported by the publish/subscribe
model in a natural way, and its implementation can often take advantage
of multicast and broadcast mechanisms at the network level to improve
the efficiency of event notification. Publish/subscribe middlewares have

7



Middleware

subscribe(A)

publish(A)

srv1
srv2

subscribe(B)

publish(B)

subscribe(A)

receive(B)
receive(A)

receive(A)

publish(B)

receive(B)

publish(C)

discard(C)

Figure 4: The Publish/Subscribe Model

recently been used for financial applications [51], command and control
systems [11, 26, 75], desktop tool communications [39], and task allocation
among groups of heterogeneous agents [29].

5 Robotics Middleware Characteristics

In section 2 and 3 we underlined the main characteristics of communi-
cation in robotics applications, and it is clear that, in such applications,
a publish/subscribe middleware implements the most natural communi-
cation model. In robotics, the communication happens between a re-
stricted number of devices (e.g., up to hundreds), highly heterogeneous
from the hardware/software/protocol point of view, and with different
quality of service or real–time requirements. Thus a publish/subscribe
middleware suitable for this domain should implement inter/intra process
data exchange between heterogeneous systems connected using heteroge-
neous networks with the following characteristics:

• Community Support : since the community is composed of several
devices, the middleware has to support the establishment of com-
munication in a dynamic environment with different degrees of re-
configurability and eventually supporting additional services like au-
thentication and security.

• Heterogeneity Support : addressing heterogeneity in platforms, pro-
tocols, operating systems, etc.

• Content Support : this aspect is related to the richness of the com-
munication support, the supported message format, and the type
provided checking.

• Subscription Support : subscriptions are the means for filtering and
routing information in an effective way, saving bandwidth and in-
creasing efficiency. Different publish/subscribe middlewares differ in
the expressiveness of the language used to subscribe to events.

8



• Quality of Service and Real–Time Support : whether and when a
message is delivered might be a critical issue in many situations; the
aspect of supporting quality of service or real–time delivery might
be a key factor in choosing the integration technology for the specific
robotic application.

5.1 Community Support

A key point for a middleware for robotics applications is the dynamics
allowed in structuring the community. It might be based on static mech-
anisms where all the peers are known from the very beginning or provide
mechanisms to dynamically change the structure of the community where
nodes can come and go at any moment and the system allows them to
connect and disconnect in a robust way. Different toolkits might sup-
port different levels of system reconfigurability. Some toolkits will allow
components to come and go at run–time, independently of where the com-
ponents are physically located, other toolkits may expect a more stable
system, where components and component topology are specified in ad-
vance. The reconfigurability of a system can be classified as:

1. Absent Reconfigurability : once the network of clients and dispatchers
is formed it is no longer possible to add new producers or consumers;
the only dynamics in this kind of system is the one provided by
the subscription mechanism that allows consumers to change their
interests about the data.

2. Client Reconfigurability : in this kind of systems it is possible to add
or remove at any moment a client from the dispatching structure
while this structure is fixed at run–time.

3. Dispatching Reconfigurability : in this case the dispatching structure
may change during execution and also dispatchers are allowed to
come and go.

The reconfigurability of the system is clearly related to the architecture
chosen for the dispatching. In the following we present some of the possible
choices:

1. Direct Connection: No explicit event dispatcher exists. Events are
dispatched by the sources to the interested parties that are directly
connected via one–to–one network channels to the sources them-
selves. In other words, the sources act as event dispatchers of the
events they want to notify.

2. Multicast : This is a special case of direct connection in which sources
exploit multicast mechanisms to deliver the events to the destina-
tions.

3. Centralized : A single event dispatcher performs the dispatching of
events. Sources and recipients are connected to the dispatcher, which
collects subscriptions and routes events based on them.

4. Distributed : A number of interconnected dispatching servers coop-
erate to deliver events. Each source and recipient connects to a
dispatching server which collects subscriptions and, in cooperation
with other dispatching servers, routes events based on subscriptions.

9



5. Mixed : The mixed approach exploits multicast channels to deliver
events within a LAN and a centralized or distributed event dis-
patcher to forward them across different LANs. This way it is possi-
ble to take advantage of the multicasting mechanisms still overcom-
ing their limitations in WAN communications.

In robotics applications, it is often important to know the identity of
the sender of a certain message, so the integration infrastructure should
give some primitive to access this kind of information. Notice how this fea-
ture can be useful in applications where trusted transactions are required
(i.e., trading agents); if sender authentication is left to the application
level, it becomes suddenly complicated to deploy “secure” systems. The
identification support provided can fall in one of the following categories:

1. Absent Identification: it is not possible from the message to derive
any information about the sender.

2. Machine Identification: the middleware provides some primitives
to get information about the identifier of the machine hosting the
process/thread that originated the message.

3. Sender Identification: each of the producers/consumers is identified
in a unique way and the middleware provides information about the
identity of the producer of some message.

5.2 Heterogeneity Support

The usual context of message oriented middleware is a wide distributed
system up to the internet scale [60] exploiting homogeneous network sup-
port through the TCP/IP protocol. In robotics, information flow can fol-
low different paths characterized by heterogeneous protocols (e.g., TCP,
UDP, CANbus, Serial Link, USB, Shared Memory, I2C, etc.), between dif-
ferent devices (e.g., DSP, Workstations, Microcontrollers, etc.) running
different operative systems (e.g., UNIX, RTOS, Linux, MS Windows, Em-
bedded Operative Systems, etc.). A key issue for a communication toolkit
is whether or not it will run on the hardware platforms that are available
for the specific application and how well it makes use of the data transport
mechanisms available on that platforms.

A middleware for robotics should be able to provide a high level com-
munication API, possibly for different programming languages, with the
ability of connecting heterogenous devices independently from the con-
necting physical channel. Thus, heterogeneity can be supported in four
complementary ways:

1. Platform Support : devices can use different hardware to realize their
function (e.g., Motorola, x86, DSP), thus they might have different
characteristics and they should be able to communicate in a trans-
parent way using the middleware

2. Protocol/Channel Support : the support for a specific architecture
does not imply the efficient use of that. For example, if a toolkit al-
lows processes on the same real–time machine to communicate, will
it allow them to use shared memory? Will the toolkit discriminate

10



between POSIX sockets and TCP/IP sockets for guaranteed com-
munications under UNIX–like operating systems? Can the toolkit
use the UDP non–guaranteed protocol when appropriate? Could the
toolkit support different communication channels (e.g., USB, serial
bus, etc.) using the appropriate protocols?

3. Operating System Support : different parts of the same distributed
application can be written for different operating systems in order to
gain as much as possible from the specific features of each of them.

4. Programming Language Support : the use of different programming
languages is diffused also in robotics (e.g., LISP for planning mod-
ules, C/C++ for control systems, Java for GUIs, etc.) so the mid-
dleware should provide this kind of heterogeneity support as well.

5.3 Content Support

An important feature of publish/subscribe systems is the type of messages
they support, their format, and their representation. If the granularity
of messages is too small, many messages have to be generated since each
of them has a poor or limited meaning. This choice might significantly
complicate the programming activity, reduce the performance of the sys-
tem, and make it difficult to test and monitor the system. On the other
hand, an eccessive complexity of messages might generate an unjustified
overhead and might not be possible on network with limited capabilities.
There is no universal solution to this design problem. It is the designer’s
responsibility to evaluate the trade–off and select the most suitable so-
lution based on the constraints and requirements of the problem being
addressed. The middleware should support designers in this decision by
providing suitable messages models and composition languages:

1. Tuple–based : messages are defined as a sequence of strings.

2. Record–based : messages are defined as sets of typed fields character-
ized by a name and a value. Note that within this category, different
event–based infrastructures could be further classified depending on
the richness of the type system they offer.

3. Object–based : messages have both a state and a set of methods. In
this case, an event is created through the invocation of the corre-
sponding class constructor.

A critical issue in the development of a publish/subscribe middleware
is the selection of the type system to create and distribute events. There
are at least two basic alternatives:

1. Global Types: all the components in the infrastructure see and use
the same set of types, this makes it possible to perform significant
consistency and compatibility checks on the information being ex-
changed.

2. No Explicit Typing : Each constituent of the infrastructure can pro-
duce events without referring to a specific type. A subscriber is
supposed to know the structure of the event being received, while
this structure is completely hidden to the middleware.

11



A global type system may result desirable, in general, but experiences
of the past years have demonstrated that it is extremely difficult to define
global types on a large scale system, where it is necessary to cross com-
pany boundaries and involve independent users. The issue is not merely
technical, it is also related to scalability and ease of operation. This is a
relevant issue on Internet scale applications since they are inherently de-
centralized and based on autonomous and independent operators. In this
case, type compatibility cannot be enforced by an explicit, network–wide
(and, thus, conceptually centralized) type system; rather, it is the result
of a set of simple and voluntarily conventions2.

5.4 Subscriptions Support

The key aspect of the pubblish/subscribe model is the capability of fil-
tering and routing information using the subscription mechanism: events
are delivered only if requested and interests can be changed dynamically.
The support to subscription specification in a publish/subscribe middle-
ware can be classified as:

1. Content–free: Subscription is accomplished by specifying a chan-
nel. The subscriber receives all the messages that are posted to the
channel.

2. Subject–based : Each event is labeled by a subject. Subscriptions
are specified by indicating the subject of interest. Notice that the
subject–based approach is a variation of the content–free concept.
We introduce this distinction because it reflects a market trend. In
practice, both subjects and channels can be used to represent the
“key” of the events the subscriber wants to receive. Both approaches
enable the exploitation of multicast communication infrastructures
and guarantee the high level of performance needed in several criti-
cal application domains (e.g., thousands events per second in stock
market applications). The drawback is in the limited freedom that
subscribers have in expressing the event categories they want to re-
ceive.

3. Content–based : Subscriptions are specified as expressions evaluated
over the event contents. Within the content–based category, sub-
scription language constructs can be further classified depending on
the expressive power they provide to specify predicates:

(a) Disjoint elementary expressions: it is possible to specify the
value or the range of values for each event parameter3.

(b) Compound expressions: it is possible to compare different event
parameters.

(c) Regular expressions: the subscription request is expressed using
regular expression.

2MIME is a typical example of such an approach. It does not define the structure of the
different files being exchanged over the Internet. MIME is used just to label the documents
being exchanged so that each party can access them according to agreed procedures and tools
(e.g., a “text” file is what you can usually open with an editor).

3In some middlewares the sender id or the id of the machine originating the event can be
part of the event parameters.

12



(d) Event combination: it is possible to define subscription expres-
sions that require the combined occurrence of more than one
event.

5.5 Quality of Service Support

In robotic applications, information delivery might require different qual-
ity of service. A middleware supporting real–time applications, should
allow the producer/consumer to specify the duration of the information
it is publishing or requesting some exception handling mechanism. Obvi-
ously, quality of service is related to the the physical channel used for the
delivery or the protocol used (i.e., TCP, UDP, EIEP, RTPS, etc.):

1. Delivery Support : the event flows can use different channels with
different performance or delivery characteristics, in such cases the
middleware can give an additional support by providing different
qualities of service:

(a) Best Effort : the system makes an attempt to forward all the
events in the fastest possible way. However, if the network be-
comes overrun or routes change, events can be lost, delayed, or
delivered out of order.

(b) Guaranteed Delivery : the middleware provides a less efficient
delivery service, but guarantees to deliver all the events or no-
tifies the application if an error happened.

(c) Ordered Delivery : in this case, not only the delivery is guar-
anteed, but also some ordering properties like absolute time
ordering, machine time ordering, causality, etc. are satisfied.

2. Priority Support : it might be possible to specify a priority for an
event, in this case the notification of such an event is prioritized
with respect to other events even if they were generated in advance.

3. Mobility Support : event–based infrastructures can provide mobility
features allowing to move components from one side to another. In
this case it should be possible to temporarily disconnect clients from
the dispatching system, save their state, move them while storing
the events they were subscribed to, and reconnect them.

4. Real–Time Support : in many applications it might be useful to give
also upper/lower bounds for the delivery of the message and this
might be decided at subscription time and at publish time. This is
required by the fact that, in robotics applications, a communication
middleware is embedded in a more complex system for task coor-
dination and distributed control which might require such kind of
service.

6 Middleware Classification

In the following we present a compared analysis of the publish/subscribe
middlewares currently used in autonomous robotics. The characteristics
underlined in the previous section are used as a classification grid for our
analisys and the results are reported in Tables 1, 2, 3, and 4.

13



(Task Control Architecture)

TCA

TCX

IPT

RTC

IPC
(Task Control Management)

TCM

(Task Description Language)

TDL

MTDL
(Multi-TDL)

Used By

Communication Tools Control Tools

FPT
Spin off

Figure 5: A schema of the Task Control Architecture and its successors

6.1 TCA and TCX

In 1988, began the work on the Task Control Architecture (TCA) [66, 67]
at Carnegie Mellon University. As described in Figure 5, TCA includes
capabilities for both inter–process communications and task–level control.
In 1990, Chris Fedor (who helped to implement TCA) developed TCX [25],
which is basically the communication infrastructure of TCA4. TCX was
used in a number of projects, most prominently Dante [7] and the BeeSoft
mobile robot software [17]. From Figure 5 it is possible to notice that TCX
originated other communication tools and also a commercially available
package called Fourth Planet Communication (FPT) [27] also applied in
robotics research at Carnegie Mellon University [28].

Community Support A TCX system comprises one or more “mod-
ules”, running processes or tasks, plus the “tcx” communications server,
which coordinates module interprocess communications. The server at-
tempts to maintain the network of communicating modules despite new
modules entering and other modules leaving (including leaving due to a
failure or crash). Modules started before the communications server will
wait for the server before finishing initialization. New modules may enter
the network and change the flow of message traffic without requiring that
existing modules to be recompiled. TCX makes use of message queues to
provide some mixture of both direct and indirect message based commu-

4The initial versions of TCX followed the client/server paradigm: every process in the
system was connected to the server. When a process would like to send data to another
process, it would send the data to the server, and the server would in turn send the data
to the appropriate process. This method, although conceptually much easier to implement,
was inefficient because the data had to make two hops, as opposed to only one hop if the
data were sent directly to the receiving process. Later versions of TCX allowed for “point–
to–point” connections requiring only one hop when sending data from one process to another
process.

14



nication. When each module initializes, it establishes a communications
link to the TCX server. Communication with the server is identical to
communication with another module. The communication server has a
message queue which is known to modules within the system and each
module initializes a default message queue whose name is the same as the
module name. The default message queues can be used by modules as
well as the communication server for sending and receiving information.
Modules are initialized with an internal message queue whose name is the
same name as the module to simplify module identification as well as to
provide a convenient reply path for message traffic.

Heterogeneity Support TCX is written in C and is distributed for
Sun (both SunOS and Mach), SGI, Intel 386 and 486 running Mach,
PMAX running Mach, NeXT machines, Motorola 68020, 68030, and 68040
processors running VxWorks. The inter–process communications uses
socket–based communication with TCP/IP and supports both publish/subscribe
and client/server modes of message passing. TCX also supports automatic
marshalling and un–marshalling of data based on a flexible format def-
inition language. The language supports efficient transmission of all C
primitive data types, as well as structures, pointers, and fixed and vari-
able length arrays.

Content Support Data formats provide a method for describing the
structure of a user data type so that data can move between separate
processes in a transparent manner. The message layer of TCX provides
routines for registering data formats which are used to encode the data
into a linear stream of bytes, transfer the byte stream between processes,
and reassemble the data at the receiving end. TCX supports a wide class
of different data formats. Primitives include data types such as integer,
float, double and string as well as special data types for variable dimension
arrays of floats, and for transferring parts of these arrays.

Subscription Support Patterns of message traffic and actual com-
munication links are determined by the message queues. Message queues
can be created by processes as either being local to that process or re-
siding in the communication server process. Communication links are
established by asking for a reference for a particular message queue. A
TCX message queue provides both a repository for messages as well as a
named mailbox for communication. Messages are sent to and read from
message queues created by processes. Messages themselves can be sent to
specific message queues or delivered to one or more message queues which
have been defined for that message. Similarly, messages can be received
from a specific message queue or set of message queues, or a message can
be received with the sending processes identified.

Quality of Service When receiving messages a module needs to be
able to specify the number of messages it is willing to save. For example,
if a module has been ignoring incoming sensor information because it has
been doing something else, when it returns to grab the next sensor message

15



it wishes to receive the most recent sensor message without examine each
sensor message received. If a module wishes to examine only the last n

sensor info messages it is able to set that. This is accomplished in TCX
by specifying a limit to the number of messages a particular message
queue will store. Messages whose information gets old over time should
be registered to message queues with a limited capacity. Newer messages
will overwrite older ones. Additional routines provide more control over
what to do when a message queue is full. TCX provides limited ability
to send high priority information by allowing a message to be inserted at
the top of a particular message queue. In this manner the message will
arrive via the same communications link or implementation as all other
messages but will be processed ahead of those messages currently in the
message queue. Another alternative would be to create a special message
queue for high priority messages.

6.2 IPT (Inter Process Toolkit)

The Inter Process Toolkit (IPT) [31] was developed by Jay Godwy at
Carnegie Mellon University for use in the Unmanned Ground Vehicle pro-
gram [71]; it started from TCX and, for the most part, the functionality
of TCX can be considered a subset of the functionality of IPT.

Community Support Modules use IPT to establish connections be-
tween themselves in order to send and receive messages. These connec-
tions can be considered as direct lines of communications setting up point
to point links between modules without going through any center. IPT,
as its precursor TCX, has the same idea of a central communications pro-
cess. These central processes are not the means by which all modules
communicate, but they are the means by which all modules initiate com-
munications. Once modules are connected, the server doesnt take up any
more CPU cycles. It does not die, because IPT is a dynamic system.
Modules are allowed to connect and disconnect throughout the lifetime
of the system, and the server needs to be around in order to make and
break these connections in an orderly fashion. There is provision in IPT
for multiple IPT servers, with each IPT server servicing a domain. The
inter–server communications was optimized for low bandwidth links, since
the design was to have an IPT server in each robotic vehicle with low–
bandwidth wireless links between the vehicles. IPT provides the clients
with the ability to detect when modules connect and disconnect, so there
can be some measure of dynamic structure to a system, but typical use is
to have a fairly stable structure for the duration of a single test.

Heterogeneity Support IPT has been ported to many non–real–
time, UNIX based, operating systems, such as SGI’s IRIX, various flavors
of SunOs, Solaris, and Linux. In addition, there has been a relatively
untested porting to some real time systems such as VxWorks and LynxOS.
IPT is written in C++ and provides C cover functions. Many of the con-
nections between IPT modules are instances of the class TCPConnection.
A TCPConnection uses TCP/IP socket based communications to send

16



and receive messages primitives. Since, a TCPConnection is a sub–class
of IPConnection, it is possible to implement shared memory connections
on real–time machines which will be vastly more efficient than TCP con-
nections by creating another sub–class of IPConnection which implements
the primitives in a different way. TCPConnections and SharedMemCon-
nections can coexist in the same process by taking advantage of some of
the basic properties of C++. IPT uses UNIX sockets instead of TCP/IP
sockets for communications between modules running on the same UNIX
machine, and IPT reduces the amount of data allocation and copying to
a minimum5.

Content Support As in TCX, each message has an instance number
and a type. The instance number can be used to keep track of the se-
quencing of messages, and the type contains information about how the
message is formatted. Message data can be formatted to allow unpacking
into C or C++ structures. Messages can be handled by user defined han-
dling routines or by searching through a message queue. A message type
consists of a several basic components. The most basic is the message
type name, which is an arbitrary string which should be unique across the
system. This message type name will be translated into a message type
ID by the central server, and the message ID is an integral part of the
message type as well. A message type can also have a message format
specifier attached to it. This format specifier starts out as a string which
directs how to unpack the raw message data into a C or C++ structure.
The code for doing this formatting was mostly inherited from TCX

Subscription Support The first step in using message types is to
register them. The registration process simply checks with the central
server to get a consistent mapping between message names and message
IDs. No other information is sent to the server and other message type
registration, such as adding handler and destination information is done
with later routines. IPT gives a mechanism whereby a module can declare
that it is a publisher for a type. Subscriber modules can connect to this
module and subscribe to the type. Then, when the publisher wants to
update the data, it can publish it to all the modules that have registered as
needing it. IPT also makes sure these publisher/subscriber relationships
last when publishing and subscribing modules die.

Quality of Service IPT is designed to be fairly flexible in managing
its connections. Each client provides a name for itself and an ordered list
of ways in which it can be reached, or routes, and when another client
requests a connection by name, the server attempts to connect the two
clients together with the dynamically determined best connection method.
For example, the server would recognize from two modules routing lists
that when they are running on the same UNIX machine, they can be con-
nected together with UNIX domain sockets. When the same two modules
are running on different UNIX machines, the routing is through TCP/IP
sockets. IPT provides a mechanism to alleviate the problem of backlogged

5IPT has been clocked at 5 times faster than TCX for large messages on a single machine.

17



messages by minimizing the message queuing and data processing that the
consumer process would otherwise incur. IPT provides a way to declare
a message type a pigeon holed message type. Declaring a message type
a pigeon hole means that if a handler is called or the message queues are
searched for a message of this type you are guaranteed to get the most
recent message of that type from a particular connection without any
additional user processing.

6.3 RTC (Real–Time Communication)

In the late 1990s, Jorgen Pedersen developed the RTC (Real–Time Com-
munications) package [55] for robotic projects at the National Robotics
Engineering Consortium (NREC) at Carnegie Mellon University. RTC
extended IPT featuring very efficient message passing for real–time appli-
cations including capabilities for shared memory communications.

Community Support RTC allows processes to form or destroy con-
nections with each other asynchronously; each process essentially has an
address at which it can be found by other processes. This address consists
of an IP address and a port number. To hide low level information, like
addresses and port numbers, a server is employed for creating a flexible
communication system. A publisher maintains a list of all those processes
which have subscribed to the publishers data. This list is initially empty.
The publisher has certain data that other processes want. If these other
processes need this data, the can make explicit connections to the pub-
lisher.

Heterogeneity Support RTC was originally designed for VxWorks,
but should be possible to use it under many different computer platforms
(e.g. x86, 68k, MIPS, SPARC,etc.) as for IPT. RTC was designed such
that every process must form a TCP connection to every other process
with which it wishes to communicate. This is required because, even
with shared memory, low level information about other processes needs
to be acquired. Since the mechanism for acquiring this data (through the
TCP connection to the server) already exists, it is called upon again when
making shared memory links between processes. The second reason for
requiring every process to form a TCP connection is that if shared memory
is not available, data which was to be sent through shared memory link
can still be sent through the TCP connection. RTC was designed to
run simultaneously under multiple computer architectures. Consequently,
RTC supports all the different byte–ordering and alignment models used
by various architectures. RTC was also designed to support different
operating systems as well as the architectural differences. RTC does not
perform any conversions to a standard network form. Rather RTC follows
the rule that it is the responsibility of the sending process to convert
the data into the correct representation for the receiving process. This
methodology is possible because each process has knowledge about the
architectures of the other processes.

18



Content Support While it uses TCX–type format strings to describe
data structures for automatic marshalling and unmarshalling, it does not
allow passing of data structures with pointers or variable–length arrays.
Once message format strings are generated, the built–in parser of the RTC
protocol can parse these strings in order to know exactly how to pack
and unpack the data associated with each message. Parsing of messages
only needs to be done once, during the initialization phase of a process.
This speeds up transmission time because RTC looks up the pertinent
information, rather than recalculating it each time a message is to be sent
between processes.

Subscription Support As TCX and IPT, RTC is a queue based
system. Before a process can send or receive a message, the message must
first be registered and for each message type, the initial queue length
allocated is five messages long. Note that efficient systems would rarely
allow messages to back up in the queue to this length. But it is conceivable
that a process may, sometimes, accumulate messages in their respective
queues. If this happens, RTC will grow the message queues to the required
length until the process is able to handle messages again.

Quality of Service As in TCX and IPT, a process can limit the length
of any message queue to one message. This capability guarantees that the
message in that queue is always the most recent message received. That
is, with a queue length of one message, that message will continually be
overwritten as new messages are read off the TCP buffer. In addition, to
save memory, a process can eliminate any message queue. This is useful
if the process is merely a sender of a message. Since the process only
sends the message, never receiving it, there is no need for a queue of that
message type.

6.4 IPC (Inter Process Communiation)

In 1994, Reid Simmons developed the IPC (Inter–Process Communica-
tions) [68] package for the NASA DS1 New Millennium mission. While,
in the end, IPC was not actually used on DS1, it has since been used
in numerous projects at CMU, NASA, DARPA, and elsewhere. As with
TCX, IPC features efficient transmission of general C data types, anony-
mous publish/subscribe and client/server capabilities, and automatic mar-
shalling and unmarshalling. IPC features both centrally routed messages
and peer–to–peer communications. It has support for timers and much
more flexibility for passing data messages, which trade off flexibility for
efficiency.

Community Support An IPC–based system consists of a central
server and any number of application–specific processes. The central
server is a repository for system–wide information (such as defined mes-
sage names), and routes messages and logs message traffic. IPC also sup-
ports a version of the client/server paradigm: sending a directed response
to a query. Both blocking and non–blocking versions of this facility are

19



provided. Before starting any modules, a program named “central” must
first be started. The most basic service that the central server provides is
message passing. A message sent from any module connected to the server
will be forwarded by the server to the module containing the handler for
the message (optionally, messages my be sent directly between applica-
tion modules). More than one server can run on the same machine, using
separate communication ports for each server. Having multiple servers is
especially useful for software development when independent developers
must run their IPC servers on the same machine. There are occasions
when a module needs to connect to more than one central server. For in-
stance, if you have two robots with a relatively slow radio link connecting
them, it may be desirable for reasons of bandwidth and latency to have a
central server residing on each robot. However, if one robot wants to send
a message to the other robot, it needs to (temporarily) access the other
robot’ s IPC subnetwork.

Heterogeneity Support IPC libraries exist for C, C++, and Allegro
Common Lisp. IPC for Java is now available (although currently it has
been tested only under Linux). IPC currently runs on the following archi-
tectures and operating systems: Sparc (running SunOS and Solaris), Intel
processors (running Linux, Windows NT, Windows 98), 680xx processors
(running VxWorks), SGI (running IRIX), and MacIntosh (running Mac
OS). IPC is actively being supported and extended; a recent addition is a
means of automatically generating format strings from XDR data struc-
ture definitions. These facility enable programs to transparently send a
wide variety of data formats, including structures that include pointers
(strings, variable length arrays, linked lists, etc.) to machines with possi-
bly different byte orderings and packing schemes.

Content Support IPC can send raw byte arrays between processes,
but it also provides a powerful data–marshalling facility that enables it to
pass data transparently between processes, even if the hosts have different
byte order or different alignment. A programmer provides such a struc-
tural specification (called a “format string”) in parameters to message
definition routines. Once this is done, IPC can know how to convert the
data structure to a byte stream and how to reconstruct it in the receiving
module. As in standard programming languages, IPC format strings are
composed of primitive data type specifiers and composite specifiers that
enable users to define more complex data types.

Subscription Support Modules must first connect to the IPC cen-
tral server, and then they can define messages, together with a descrip-
tion of their data formats. Modules that want to handle messages must
indicate their interest specifying the message name. Definitions and sub-
scriptions can be done in any order, including subscribing to a message
before it is defined. When messages have been thus registered, modules
can publish messages.

20



Quality of Service IPC provides the same QoS provided by IPT, but
it can also be used to invoke a user–specified function at a specific time,
or with a specified frequency. These timer capabilities enable a module
to perform time–critical actions, or to dispatch events at specific times.
While these functions can be used for time–dependent operations, note
that they are not truly interrupt driven, they will be invoked only when the
module is within some IPC function that is listening for messages. If the
specified time passes while the module is doing some other computation
(or is swapped out), the timer function will be invoked at the next available
opportunity. The IPC package supports also message logging and message
data logging. The Comview tool can be used to visualize and analyze
patterns of communication.

6.5 ETHNOS (Expert Tribe in a Hybrid Network
Operating System)

The ETHNOS (Expert Tribe in a Hybrid Network Operating System) ar-
chitecture was developed by Maurizio Piaggio at University of Genoa [58,
57, 56]. It was used in the ART RoboCup Team and service applica-
tions as well. ETHNOS provides support from two main point of views:
software integration and real–time execution.

Community Support An ETHNOS application can be divided on
two main entities: experts and kernels. An expert is a program that exe-
cutes in a periodic fashion its functions. A kernel is a program with two
main goals. It interfaces with the system scheduler to modify experts’ pri-
orities and it realizes the communication between experts. It is possible
to implement a distributed application with many kernels each of them
on different computers and providing services to many experts. When an
expert subscribes to a message on a different machine, the kernel forwards
the subscription to the other machine and provides locally the messages
to the expert’s local message list. There are two paradigms for kernel
interaction. In the client/server structure for the kernels, all the mes-
sage exchange passes through a single central server; if this central server
crashes the system doesn’t work any more, but this setting allows for ex-
ecuting different kernels on the same machine. Kernels can be deployed
also as a broadcast club and they are identified with the local address IP
and a port number. If a Kernel crashes in the broadcast club, the system
keep working, but in this case it is not possible to run more than one
kernel for each machine.

Heterogeneity Support The API has been written for the C++
language on which the entire system is based. However for communica-
tion to external devices (e.g., user consoles) a subset of the API contain-
ing the necessary communication services has also been written of Java
language allowing an easy development of ETHNOS integrated Java ap-
plets. Currently, ETHNOS has been developed in compliance to Posix RT
specifications as an add–on to the Linux operating systems. Experts are
linux kernel threads, scheduled with the Posix round–robin policy. In the

21



client/server Kernel architecture the protocol used for message passing
is TCP/IP while in the broadcast club ETHNOS uses EEUDP (Ethnos
Exstended UDP) an extension of UDP.

Content Support An ETHNOS message is composed by an header
and a data field (i.e., a block of byte); in the header are reported the
dimension of the data block and the type of the message. Messages are
created by providing a pointer to the memory area to transfer and data
are moved without any marshalling from one system to the other. In
some cases it is possible to share a memory area in order to speed up
the data flow and this is supported as an extra feature that does not use
the publish/subscribe model (i.e., modules can pass pointers to shared
memory areas).

Subscription Support Experts use types to subscribe for different
messages; types are integer numbers up to 100. Since a message is simply
a sequence of bytes, the application has to know its internal format, and
no typing is used.

Quality of Service In ETHNOS, network communication is often
wireless (i.e. radio link, wavelan, etc.). Because of interferences or be-
cause the robot may have moved to a blind zone, transmission packets
are more frequently lost. ETHNOS implements a protocol for this type
of applications, called EEUDP (Ethnos Extended UDP). It is based on
the UDP and it extends it with the necessary properties. The EEUDP
allows the transmission of messages with different priorities. The min-
imum priority corresponds to the basic UDP (there is no guarantee on
the message arrival) and should be used for data of little importance or
data that is frequently updated (e.g., the robot position in the environ-
ment that is periodically published). The maximum property is similar
to TCP because the message is sent until its reception is acknowledged.
However, it differs because it does not guarantee that the order of arrival
of the different messages is identical to the order in which they have been
sent. Different priorities allow the re–transmission of a message until its
reception is acknowledged for different time periods (e.g., 5 ms, 10 ms,
etc.).

6.6 DCDT (Device Communities Development
Toolkit)

DCDT (Device Community Development Toolkit) is a publish/subscribe
middleware recently developed by Paolo Meriggi at University of Brescia
and Alessandro Mazzini at Politecnico di Milano [15] and it is a project
largely inspired from ETHNOS, sharing similar structure and software
interface. The main differences regards the aim in using different phys-
ical communication means in a transparent way, the scalability (i.e., it
is possible to have multiple instance of the main structure on the same
machine) the portability (achieved by using standard libraries), and the

22



“openness” of the software (i.e., it is distributed according to the LGPL
licence).

Community Support DCDT is a multithreaded architecture and
consists in a main active object, called Agora, hosting and managing vari-
ous software modules, called Members. Members are basically concurrent
programs executed periodically or on the meeting of some requested con-
ditions. It is possible to realize distributed applications running different
Agora on different devices/machines, each of them hosting many Mem-
bers. It is possible to have on the same machine more than one Agora
(hosting its own Members), in order to achieve a little scalability or simply
to emulate the presence of different robots without the need of actually
having them connected and running. Agoras on different machines are
able to communicate with each other trhough a particular member, called
Finder, which is responsible for finding them dinamically with short mes-
sages via multicast.

Heterogeneity Support Similarly to ETHNOS, the API developed
is written for the C++ language, which is the language used for the real-
ization of all the systems the software has been actually used for. There is
no Java support yet, even though it is one of the programmed extensions
like the porting under Microsoft Windows Operating Systems. DCDT is
Posix–compliant, and, for stability reasons, the threads lay in user space
rather in the kernel one as in the ETHNOS case. The peculiar attitude
of DCDT toward different physical communication channels (e.g., RS–232
serial connections, USB, Ethernet or IEEE 802.11b , etc.) is one of the
main characteristics of this publish/subscribe middleware.

Content Support DCDT messages are very similar to the ETHNOS
ones, with a header and a payload fields. In the header there are con-
tained the unique identification of the message type, the size of the data
contained in the payload and some information regarding the producer
(e.g., producer id, time of construction, etc.). As in ETHNOS, data are
moved from one machine to another without any marshalling. No typ-
ing is used and each Member has to know the internal structure of each
incoming message.

Subscription Support Members use unique identification numbers
to subscribe and unsubscribe messages available throughout the commu-
nity. The maximum number of different messages types at the present
moment is fixed to 128, but it can be extended.

Quality of Service Communications in DCDT are carried out in sev-
eral ways (RS–232 serial connection, Ethernet, IEEE 802.11b, etc.) and
the messages can be shared basically according three modalities: with-
out any guaranty (e.g. UDP), with some retransmissions (e.g. UDP
retransmitted, similar to EEUDP in ETHNOS) or with absolute receipt
guaranty (e.g. TCP). Although at the present time DCDT only achieves
soft–realitime performances, it is planned to integrate it with RTAI [9],

23



a real–time library which could help scheduling threads in a quasi–hard–
realtime fashion, in order to cover even those application which require
higher and more strict time constraints.

6.7 NDDS (Network Data Delivery System)

The Network Data Delivery System (NDDS) is a publish/subscribe mid-
dleware commercially distributed by Real–Time Innovation (RTI) [37, 38].
It was initially developed by Gerardo Pardo–Castellote in his PhD the-
sis [52] at Standford University and it has been used in many robotics
application [12, 19]. Related to NDDS there is an interesting work done by
Pardo–Castellote to standardize the Real–Time Publish/Subscribe (RTPS)
protocol for IP–based real–time communication systems [53].

Community Support NDDS’s implementation is totally symmet-
ric and quasi–stateless, absence of central servers or privileged nodes.
All communicating peers are identical and use data–aging to decay any
cached state. All information regarding subscriptions and productions
is refreshed periodically. NDDS assumes that its various modules are
connected by a network, and all communications is done via UDP. Each
processor in an NDDS system runs an NDDS agent which acts as a broker
for information types. The NDDS agents are told what other machines
are in their peer group, and information subscriptions and publishings are
transparently transported across the processors in the NDDS peer group.
Since subscribed messages are anonymous, i.e., the publisher is unknown,
the user will have to encode the message source in the message in order
to be able to reply to the appropriate module if necessary. Consumers
are notification based. They subscribe to a set of instances (identified by
their NDDSname) by providing call–back functions for each instance to
which they subscribe. When a data update arrives, the call–back function
of every consumer is called with the data–item as a parameter.

Heterogeneity Support NDDS is a commercial product from RTI,
source code is not available and there is a monetary cost for non–academic
usage. Since it is commercial, it has been ported to a wide variety of op-
erating systems (i.e., VxWorks and popular desktop platforms such as
Windows, Solaris, Linux, and HP–UX) and is well supported and inte-
grated with other useful products from the same company. NDDS uses
UDP/IP as means of communication. To allow communications between
computers with different data formats the External Data Representation
(XDR) is used.

Content Support NDDS requires all data instances to be of a known
type. NDDS has some built in types (such as strings and arrays) but
most data flow consists of user–defined types. Creating a new NDDS
type involves binding a new type–name with the functions that will allow
NDDS to manipulate instances of that type. NDDS provides a tool that
can be used to automatically generate code for user–defined types from
the type–specification given in the XDR language.

24



Subscription Support NDDS identifies data instances by name. The
scope of this name extends to all tasks sharing data through NDDS. Two
instances with the same NDDS name are viewed by NDDS as different
updates of the same data instance and are otherwise indistinguishable to
the client.

Quality of Service NDDS allows explicit specification of custom up-
date rates, deadlines and the actions to take if a deadline is missed. Within
NDDS all data are time–tagged and decisions are made based on the time
when the data was generated, sent and/or received. A producer is char-
acterized by three parameters: production rate, strength and persistence.
The strength and persistence parameters are used to resolve multiple–
producer conflicts. Producers’ data are used while it is the strongest
source that has not exceeded its persistence. Typically, a producer that
will generate data updates every period T will set its persistence to some
value Tp where Tp > T . Thus, while that producer is functional, it will
take precedence over any producers of less strength. Consumers are char-
acterized by two parameters, the minimum separation and the deadline.
These parameters are used to regulate consumer update rates. Consumers
are guaranteed updates no sooner than the minimum separation time and
no later than the deadline. Typically the minimum separation protects
the consumer against producers that are too fast whereas the deadline
provides a guaranteed call–back time which can be used to take appro-
priate action. Although NDDS’ basic transport mechanism, UDP, does
not guarantee message arrival, NDDS does implement a protocol on top
of UDP to ensure delivery of messages when the user desires that feature.
By default NDDS provides unreliable, unacknowledged data updates from
producers to consumers. A producer may specify any one of its produc-
tions to be delivered reliably. Reliable updates are grouped together in
special packets that are individually acknowledged. The producer is no-
tified if the update is not acknowledged by at least one consumer after
a specified deadline and/or if another reliable production is attempted
before the previous one was acknowledged.

6.8 TelRIP (TeleRobotics Interconnection Proto-
col)

The TeleRobotics Interconnection Protocol is an architecture developed
at Rice University by Lawrence Ciscon in 1992 [18] to communicate and
share data in distributed telerobotic applications in the University Space
Automation and Robotics Consortium.

Community Support In the TelRIP systems, processes exchange
data through separate processes called routers; each user process has a
communication channel to a router. From a user’s point of view, processes
access the router via a uniform, processor independent, interface. Each
processor typically contains a single router that handles all communication
between its processes and other processor’s routers. Routers also handle
adding new and removing old processes as well as various maintenance

25



tasks. Routers are connected with a fully connected architecture in order
to speed up the transferring process along the shortest path. Several
properties are attached to a data object these include also the source
address, a unique identifier of the module in which it was created.

Heterogeneity Support The TelRIP environment is composed of
a library written in C and the byte ordering of the external data repre-
sentation is the Internet byte order. The implementation was used on
different flavors of UNIX machines (Suns, Lynx Unix, Silicon Graphics)
and on MS–DOS machines as well. Translation between the internal and
the external byte ordering in handled in a transparent way by the environ-
ment, allowing user programs written in different languages or running on
different processor architectures to use the same data object. Protocols
for information exchange uses network sockets, inter–process connections
(i.e., pipes) and share memory. However, each library only uses one type
of connection at a time; the router has the responsibility for managing a
mixture of different kinds of connections simultaneously.

Content Support Information is exchanged as data object with an
associated Base Data Type (BDT) that define the content of it. The
layout of the data within a data object is described by a C–like language
and each data object contains an identifier to specify its BDT. In adition
to the BDT identifier and the data itself, a data object, contains additional
information about the creation, disposition, and nature of the data. This
information may include the source of the data, the time it was created, an
intended destination, and a list of other properties that help differentiate
a particular data object from others of the same basic type. Each of these
properties consists of a property–name/property–value pair.

Subscription Support Processes indicate the type and properties of
data they are interested in sending and receiving. Processes merely make
the data available, with the data communication environment fulfilling in-
terested recipient processes’ requests. It is possible to specify subscription
regarding the BDT of the data object, the properties, and the sender.

Quality of Service Each network node contains a dedicated daemon
process to serve as a gateway. These daemons are connected to each other
using TCP/IP and route all the messages between applications. Message
delivery is guaranteed but no priorities or real–time support are given.

6.9 SPLICE (Subscription Paradigm for Logical
Interconnection of Concurrent Engines)

The Subscription Paradigm for Logical Interconnection of Concurrent En-
gines (SPLICE) [10] was developed by Maarten Boasson in 1993 to provide
the communications backbone for command and control applications.

26



Community Support SPLICE applications are independent, au-
tonomous processes totally isolated from each other that interact with the
rest of the system through so–called agents. An agent embodies both stor-
age capacity and process facilities for handling all communication needs.
The agents in their global communication rely on broadcast, which must
be supported by the underlying communication network.

Heterogeneity Support The SPLICE system is written in C and
was used on Transputers running Helios and in Sun machines runing
SunOS. It uses network sockets over TCP/IP.

Content Support Data is typed and is declared using SPLICE’s own
Pascal–like language, but the actual data instances (identifiers) produced
and consumed by each SPLICE application must be known and specified
at compile time using SPLICE’s language. An application may specify
fields in the data structure as key field in order to improve the efficiency
of the filtering process and indexing mechanism.

Subscription Support In SPLICE applications refer to data using
unique identifiers. SPLICE provides a mechanism that allows specific
fields within a data–type to be designated as keys; consumers can choose
to treat updates that differ in their keys as completely different items
stored and retrieved independently or just different updates of the same
item (i.e., only one the latest copy is stored).

Quality of Service The agent of each the producer guarantees that
data are sent to all established consumer agents. SPLICE also contains a
mechanism for arbitrating among different producers of the same data.

7 Discussion

The present work is meant to present the publish/subscribe model in
a robotics context and for this reason the analysis done in Section 6
is restricted to middleware examples applied in this research field. In
software engineering, the publish/subscribe model has been deeply in-
vestigated expecially for wide–area event notification and content–based
networking [60] [13]. The research in this field has leaded to several pub-
lish/subscribe middleware for software integration that could be used in
robotics as well if they fulfil application requirements.

The Java Messaging Service (JMS) [48] is an API developed by Sun
Microsystems. It aims at representing the standard, common interface for
Java messaging products. Sun does not provide any implementation of
this interface, and assumes that other tool vendors will adopt it. Several
JMS–compliant publish/subscribe systems implement this API adopting a
centralized event dispatcher and reliable channels between the dispatcher
and its clients.

OMG has defined a standard for the implementation of an event ser-
vice on top of the CORBA object request broker [33]. In particular, the

27



standard defines the IDL interfaces for three types of components that
are involved in an event–based interaction. These are the event supplier,
the event consumer, and the event channels. The CORBA–compliant
event channels that are currently available on the market mostly present
a centralized architecture. Event channels can be pipelined. This con-
stitutes a sort of distributed event dispatching architecture. However,
such distribution is not transparent to application developers since they
have to explicitly manage it. In order to enhance the capabilities of the
event service, OMG is currently working on specifying the interfaces of a
notification service [35].

SmartSockets [20] is a commercial event–based infrastructure devel-
oped by Talarian. It provides a rich environment for the development
of event–based applications and supports monitoring of the events ex-
changed among the components of an application. It provides also APIs
for synchronous communication and supports fault tolerant connections.
Smartsockets supports a record–based event model and predefines a set
of commonly used event types. Developers can either create events as
instances of these types or define their own application–specific types.
The subscription approach adopted by Smartsockets is subject–based and
subjects can be organized in hierarchies. The internal structure of the
Smartsockets event dispatcher is distributed. Each dispatching server is
aware of all the subscriptions that have been issued in some point on
the system and is able to dynamically route events based on the cost of
network connections and on their load.

These examples (i.e., Java Message System, CORBA Notification Ser-
vice, and SmartSockets) can be considered as well established general
purpose alternatives to the application–specific middlewares presented in
Section 6. A possible drawback of these systems is the wide–area target
they where designed for and their intrisic trade off between efficiency and
generality. For JSM the need for a virtual machine running the server and
the use of Java as a uniforming language could affect the efficiency of the
system. Available implementations of JMS and CORBA event services
use a centralized dispatcher and also this might be seen as a drawback
since it presents single failure point. SmartSocket is a commercial product
and thus it is not an open standard and would impose to all the module
developers the purchase of this software6.

8 Conclusion and Future Work

In this work we have proposed the publish/subscribe model as an inte-
gration middleware in robotics application. While in software engineer-
ing the publish/subscribe middlewares have been deeply investigated, in
robotics there are only few systems that implement this communication
model. We have presented a requirement grid to be used in choosing a
publish/subscribe middleware for robotics and we have classified the avail-
able tools according to this grid. In Tables 1, 3, 2, and 4 we summarize
this classification work.

6The following observation could be done also for the NDDS middleware presented in
Section 6.7, but in that case the use is free for non–commercial use.

28



Community
Recofigurability Architecture Indentification

TCX
Client Direct Sender

Centralized
IPT Client Direct Sender
RTC Client Direct Sender

IPC
Direct

Client Centralized None
Mixed

NDDS Client Distributed None
ETHNOS Dispatch Distributed Machine
DCDT Dispatch Distributed Machine
TelRIP Client Distributed Sender
SPLICE Dispatch Distributed Sender

Table 1: Community Support for Classified Publish/Subscribe Middlewares

Many other researchers have recognized the need for a network com-
munications layer allowing both data–transfer and event–signalling, but
many of these approaches have been tailored to specific applications or em-
bedded within an architectural model (e.g., MICA [41], APHRODITE [72],
MIRO [24]). Recent requests for proposals from the European Robotics
Research Network (Euron) to build a standard set of tools for robotics
proove that a definitive choice has not been taken yet [62]. This set of
tools (OROCOS – Open Robot Control System) is still lacking an inter–
component communication middleware and only recently the CORBA–
based middleware Smartsoft [63] has been proposed for this purpose.

As a final note, it can be noticed how the new robotics scenario de-
scribed in Section 2 resembles the appliance integration one [40] or the
ubiquitous computing framework [73]. Requirements in these research
fields are, in fact, quite similar to tose described in Section 5. Our in-
tuition is that middleware developed for robotics applications could be
easily applied in those fields and vice–versa.

References

[1] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. Com-
puter, 19(8):26–34, 1986.

[2] H.A. Akeel and S.W.Holland. Product and technology trends for
industrial robots. In Proceedings of ICRA ’00. IEEE International
Conference on Robotics and Automation, pages 696 – 700, 2000.

[3] A.L. Ananda, B.H. Tay, and E.K. Koh. A survey of asynchronous
remote procedure calls. ACM SIGOPS Operating Systems Review,
26(2):92–109, 1992.

[4] R. Arkin. Behavior–based Robotics. MIT Press, 1998.

29



Heterogeneity
Platform Protocol Operating System Language

TCX

Sparc
Intel x86 TCP VxWorks C

Motorola 68K Mach
SGI

IPT
Sparc TCP Solaris C

Intel x86 Sockets Linux C++
SGI IRIX

RTC
VME Cage TCP VxWorks C

Shared Memory C++

IPC

SunOS
Sparc Solaris C

Motorola 68K TCP Linux C++
Intel x86 UDP VxWorks LISP
SGI Win98/NT Java

IRIX

NDDS

HP–UX
Sparc Solaris C++

Motorola 68K UDP + RTPS Linux Java
Intel x86 VxWorks

Win98/NT

ETHNOS
Sockets

Intel x86 UDP + EEUDP Linux C++
Shared Memory

DCDT

Sockets
Intel x86 UDP/TCP Linux C++

Shared Memory
Serial Bus

TelRIP

Sparc Sockets SunOS
SGI TCP Lynx Unix C

Intel x86 Shared Memory MS–DOS
IRIX

SPLICE
Transputer TCP/UDP Helios C

Sparc SunOS

Table 2: Heterogeneity Support for Classified Publish/Subscribe Middlewares

30



Content Subscription
Data Type

TCX Record–based Global Content–free
IPT Record–based Global Content–free

RTC
Record–based Global Content–free

Subject–based
IPC Record–based Global Subject–based

NDDS
Record–based Global Subject–based

(hierarchical)
ETHNOS Record–based None Subject–based
DCDT Record–based None Subject–based
TelRIP Record–based Global Content–based
SPLICE Record–based Global Content–based

Table 3: Content and Subscription Supports for Classified Publish/Subscribe
Middlewares

Quality of Service
Delivery Priority Mobility Real–Time

TCX
Guaranteed Yes No No
(ordered)

IPT
Guaranteed Yes No No
(ordered)

RTC
Guaranteed Yes No No
(ordered)

IPC
Guaranteed Yes No Timers
(ordered)

NDDS
Guaranteed ? No Deadlines
Best–Effort Update Rates

ETHNOS
Guaranteed Yes No Scheduling
(not ordered)

DCDT
Best Effort
Guaranteed Yes No Scheduling
(ordered)

TelRIP
Guaranteed No No No
(ordered)

SPLICE
Guaranteed No No Delivery Update
(ordered)

Table 4: Quality of Service for Classified Publish/Subscribe Middlewares

31



[5] A.V. Bakre and B.R. Badrinath. Reworking the rpc paradigm for mo-
bile clients. Mobile Networks and Applications, 1(4):371–385, 1996.

[6] H.E. Bal and A.S. Tannenbaum. Distributed programming with
shared data. In Proceedings of ICCL – International Conference on
Computer Languages, pages 82–91, Miami, Florida, 1988.

[7] J. Bares and D. Wettergreen. Dante II: Technical description, re-
sults and lessons learned. International Journal of Robotics Research,
18(7):621–649, July 1999.

[8] B.Dalton and K.Taylor. Distributed robotics over the internet. IEEE
Robotics and Automation Magazine, pages 22–27, June 2000.

[9] E. Bianchi, L. Dozio, G.L. Ghiringhelli, and P. Mantegazza. Complex
control systems, applications of diapm-rtai at diapm. In Proceedings
of Realtime Linux Workshop, Vienna, 1999.

[10] M. Boasson. Control systems software. IEEE Transactions on Auto-
matic Control, 38(7):1094–1106, July 1993.

[11] M.M. Bonsangue, J.N. Kok, M.Boasson, and E.D. de Jong. A soft-
ware architecture for distributed control systems and its transition
system semantics. In Proceedings of the 1998 ACM symposium on
Applied Computing, pages 159–168. ACM Press, 1998.

[12] J.L. Bresina, M.Bualat, M. Fair, R. Washingtony, and A. Wright.
The K9 on-board rover architecture. Autonomy and Robotics Area,
NASA Ames Research Center, 2000.

[13] A. Carzaniga. Architectures for an Event Notification Service Scalable
to Wide–area Networks. PhD thesis, Politecnico di Milano, Milano,
Italy, December 1998.

[14] R. Cassinis. An application of automatic resource sharing to robot
programming. In Proceedings of III International Symposium of
Robotics Research, 1986.

[15] R. Cassinis, P. Meriggi, A. Bonarini, and M. Matteucci. Device Com-
munities Development Toolkit: An Introduction. In Proceedings of
EUROBOT 01, Lund, Sweden, September 2001.

[16] D.R. Cheriton. The V kernel: A software base for distributed sys-
tems. IEEE Software, 1(2):19–42, April 1984.

[17] W. Christiansen, J. Kurien, G. More, T. Sawyer, B. Smart, and
S. Thrun. Beesoft user’s guide and software reference. Real World
Interface, Inc., 1997.

[18] L.A. Ciscon, J.D. Wise, and D.H. Johnson. A distributecl data shar-
ing environment for cooperative intelligent robots. In Proceedings of
Fourth Annual Conference on Intelligent Robotic Systems for Space
Exploration, pages 95–108, 1992.

[19] C. Clark and S. Rock. Randomized motion planning for groups of
nonholonomic robots. In Proceedings of the 6th International Sympo-
sium on Artificial Intelligence, Robotics, and Automation in Space,
2001.

32



[20] Talarian Corporation. Mission critical interprocess communications:
An introduction to SmartSockets. White Paper, 1997.

[21] P. Dasgupta, R.C. Chen, S. Menon, M.P. Pearson, U. Anantha-
narayanan, U. Ramachandran, M. Ahamad, R.J. LeBlanc, W.F. Ap-
pelbe, J.M. Bernabeu-Auban, P.W. Hutto, M.Y.A. Khalidi, and C.J.
Wilkenloh. The design and implementation of the clouds distributed
operating system. Computing Systems, 3(1):11–46, 1990.

[22] C. Dye. Oracle distributed systems, 1999.

[23] G. Eddon and H. Eddon. Inside distributed COM. Microsoft Press,
1998.

[24] S. Enderle, H. Utz, S. Sablatnog, S. Simon, G.K. Kraetzschmar, and
G. Palm. Miró: Middleware for autonomous mobile robots. In IFAC
Conference on Telematics Applications in Automation and Robotics,
2001.

[25] C. Fedor. TCX: an interprocess communication system for building
robotic architectures. Technical report, Carnegie Mellon University,
Robotics Institute, 1994.

[26] S. Fleury, M. Herrb, and R. Chatila. Genom: a tool for the specifi-
cation and the implementation of operating modules in a distributed
robot architecture. In In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots & Systems (IROS), pages 842–848,
1997.

[27] T.W. Fong. Fourth planet communicator. Fourth Planet Inc., 1998.

[28] T.W. Fong, C. Thorpe, and C. Baur. A safeguarded teleoperation
controller. In IEEE International Conference on Advanced Robotics
2001, Budapest, Hungary, August 2001.

[29] B.P. Gerkey and M.J. Mataric̀. Murdoch: publish/subscribe task
allocation for heterogeneous agents. In Proceedings of the fourth in-
ternational conference on Autonomous Agents, pages 203–204. ACM
Press, 2000.

[30] C.D. Gill and W.D. Smart. Middleware for robots? In Proceedings of
the AAAI Spring Symposium on Intelligent Distributed and Embedded
Systems, 2002.

[31] J. Gowdy. IPT: An object oriented toolkit for interprocess com-
munication. Technical Report CMU-RI-TR-96-07, Carnegie Mellon
University, Robotics Institute, March 1996.

[32] J. Gowdy. A qualitative comparison of interprocess communications
toolkits for robotics. Technical Report CMU-RI-TR-00-16, Carnegie
Mellon University, Robotics Institute, June 2000.

[33] Object Management Group. CORBAservices: Common Object Ser-
vices Specification, July 1997.

[34] Object Management Group. CORBA Services book, 1998.

[35] Object Management Group. Notification Service, August 1999.

[36] B. Hayes-Roth. An architecture for adaptive intelligent systems. Ar-
tificial Intelligence, 72(1–2):329–365, 1995.

33



[37] Real Time Innovations Inc. Network data delivery service: The real-
time connectivity solution 1.0 ed. Sunnyvale, California, June 1996.

[38] Real Time Innovations Inc. NDDS: Real-time networking made sim-
ple, 2000.

[39] SunSoft Inc. Introduction to the ToolTalk Service, September 1991.

[40] H. Ishikawa and T. Nakajima. A case study of implementing home ap-
pliance middleware on linux and java. In Proceedings of 2002 Sympo-
sium on Applications and the Internet (SAINT), pages 31–34, Narar
City, Nara, Japan, 2002. IEEE Computer Society Press.

[41] P. Judson, P. Lones, and L. Butler. A modular control architecture
for real–time synchronous and asynchronous systems. In Proceedings
of the SPIE - Applications of Artificial Intelligence: Machine Vision
and Robotics, volume 1964, pages 287–298, 1993.

[42] M.F. Kaashoek, H.E. Bal, and A.S. Tanenbaum. A comparison of
two paradigms for distributed shared memory. Software – Practice
and Experience, 22(11):985–1010, 1992.

[43] M.J. Mataric̀. Interaction and intelligent behavior. Technical Report
AITR-1495, 1994.

[44] F. Mattern and M. Naghshineh, editors. Pervasive Computing –
First International Conference, Zurich, Switzerland,, August 2002.
Springer.

[45] Sun Microsystems. XDR: Standard, June 1987.

[46] Sun Microsystems. RPC: Remote procedure call protocol specifica-
tion version 2. Technical report, Internet Network Working Group
Requets for Comments RFC 1057, June 1988.

[47] Sun Microsystems. Java remote method invocation specification,
1997.

[48] Sun Microsystems. Java Message Service Specification Version 1.1,
April 2002.

[49] E. Di Nitto and D.S. Rosenblum. On the role of style in selecting
middleware and underwear. In Proceedings of ICSE ’99 Workshop
on Engineering Distributed Objects, May 1999.

[50] A. Nye and T. O’Reilly. X Toolkit intrinsics programming manual:
second edition for X11, release 4. O’Reilly & Associates, Inc., 1990.

[51] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information bus: an
architecture for extensible distributed systems. In Proceedings of the
fourteenth ACM symposium on Operating systems principles, pages
58–68. ACM Press, 1993.

[52] G. Pardo-Castellote, S. Schneider, and M. Hamilton. NDDS: The
real-time publish-subscribe middleware. In in Proceedings of the
IEEE Real-Time Systems Symposium, 1999.

[53] G. Pardo-Castellote, S.S. Thiebaud, M. Hamilton, and H. Choi. Real-
time publish-subscribe protocol for IP–based Real–Time communi-
cations. Real Time Innovations Inc., September 2001.

34



[54] R. Patzke. Fieldbus basics. Computer Standards & Interfaces, 19(5-
6):275–293, 1998.

[55] J.D. Pedersen. Robust communications for high bandwidth real-
time systems. Technical Report CMU-RI-TR-98-13, Carnegie Mellon
University, Robotics Institute, May 1998.

[56] M. Piaggio, A. Sgorbissa, and R. Zaccaria. ETHNOS–II a program-
ming environment for distributed multiple robotic systems. In Pro-
ceedings of the 32th IEEE Hawaii International Conference on Sys-
tem Sciences, 1999.

[57] M. Piaggio, A. Sgorbissa, and R. Zaccaria. ETHNOS: a light ar-
chitectue for real–time mobile robotics. In Proceedings of the 1999
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tem, 1999.

[58] M. Piaggio and R. Zaccaria. An information exchange protocol in a
multi–layer distributed architecture. In Proceedings of the 30th IEEE
Hawaii International Conference on System Sciences, 1996.

[59] G.C. Roman, G.P. Picco, and A.L. Murphy. Software engineering for
mobility: a roadmap. In Proceedings of the conference on The future
of Software engineering, pages 241–258. ACM Press, 2000.

[60] D.S. Rosenblum and A.L. Wolf. A design framework for internet–
scale event observation and notification. In M. Jazayeri and
H. Schauer, editors, Proceedings of the Sixth European Software
Engineering Conference (ESEC/FSE 97), pages 344–360. Springer–
Verlag, 1997.

[61] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guille-
mont, F. Herrman, C. Kaiser, S. Langlois, P. Léonard, and
W. Neuhauser. Overview of the Chorus distributed operating sys-
tem. InWorkshop on Micro-Kernels and Other Kernel Architectures,
pages 39–70, Seattle WA (USA), 1992.

[62] C. Schlegel. Communication patterns for OROCOS hints, remarks,
specification, February 2002.

[63] C. Schlegel and R. Worz. The software framework SmartSoft for im-
plementing sensorimotor systems. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, IROS ’99, pages 1610–
1616, Kyongju, Korea, October 1999.

[64] D. Schulz, W. Burgard, D. Fox, S. Thrun, and A.B. Creemers. Web
interfaces for mobile robots in public places. IEEE Robotics & Au-
tomation Magazine, 7(1):48–56, March 2000.

[65] J. Silcock. Distributed shared memory: A survey. Technical Report
TR C95/22, Deakin University, Geelong, Victoria, Australia, 1995.

[66] R. Simmons. Structured control for autonomous robots. IEEE Trans-
actions on Robotics and Automation, 10(1), February 1994.

[67] R. Simmons, R. Goodwin, C. Fedor, and J. Basista. Task Control
Archiecture: Programmer’s Guide to Version 8.0, May 1997.

[68] R. Simmons and D. James. Inter Process Communication: A Refer-
ence Manual, February 2001.

35



[69] H. Stern. Managing NFS and NIS. O’Reilly & Associates, Inc., 1991.

[70] A.S. Tanenbaum, R. van Renesse, H. van Staveren, G.J. Sharp, S.J.
Mullender, J. Jansen, and G. van Rossum. Experiences with the
Amoeba distributed operating system. Communications of the ACM,
33(12):46–63, 1990.

[71] C. Thorpe, O. Amidi, J. Gowdy, M. Hebert, and D. Pomerleau.
Integrating position measurement and image understanding for au-
tonomous vehicle navigation. In Proceedings of 2nd International
Workshop on High Precision Navigation, November 1991.

[72] Aleksandar Timcenko, Steven Abrams, and Peter K. Allen.
Aphrodite: Intelligent planning, control and sensing in a distributed
robotic system.

[73] M. Weiser. Some computer science issues in ubiquitous computing.
Communications of the ACM, 36(7):75–84, 1993.

[74] A. Willig. Analysis and tuning of the profibus token passing pro-
tocol for use over error–prone links. Technical Report TK-99-001,
Technical University Berlin, March 1999.

[75] J.D. Wise and L. Ciscon. TelRIP distributed applications environ-
ment operating manual. Technical Report 9103, Rice University,
Houston Texas, 1992.

36


