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ABSTRACT

In this paper we investigate the relationship between several
dimensionality reduction methods and the intrinsic dimen-
sionality of the data in the reduced space, as estimated by
the fractal dimension. We show that a successful dimen-
sionality reduction/feature extraction algorithm projects the
data into a feature space with dimensionality close to the in-
trinsic dimensionality of the data in the original space and
preserves topological properties.
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1. INTRODUCTION

Many real-life datasets have a large number of features,
some of which are often highly correlated. These correlated
attributes contribute to the increase of complexity of any
treatment that can be applied to a dataset (spatial indexing
in a DBMS, density estimation, knowledge retrieval in data
mining processes, etc). This is referred to as the curse of
dimensionality or as the empty space phenomenon. More-
over if there are linear correlations in the data (very likely
in high dimensions), the optimal mean integrated squared
error when estimating the data density will be very large
even if the sample size is arbitrarily large.

However, a phenomenon which appears high—dimensional,
and thus complex, can actually be governed by a few sim-
ple variables/attributes (sometimes called hidden causes or
latent variables), and the many degrees of freedom are due
to a variety of factors like noise or presence of irrelevant
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variables. Provided that this influence does not mask en-
tirely the original structure, a good dimensionality reduction
method should be able to “filter out” the unuseful dimen-
sions and recover the original variables or an equivalent set
of them.

Often vector spaces suffer from large differences between
their embedding dimensionality and their intrinsic dimen-
sionality. We define the embedding dimensionality of
a dataset as the number of attributes of the dataset (its
address space). The intrinsic dimensionality of a phe-
nomenon (and also of the data retrieved from it) is defined
as the real number of dimensions in which the points can be
embedded while preserving the distances among them [4].
For example, a plane embedded in a 50-dimensional space
has intrinsic dimension 2 and embedding dimension 50. This
is in general the case in real applications and it has lead to
attempts to measure the intrinsic dimension using concepts
such as “fractal dimension” [5].

From a purely geometrical point of view, the intrinsic di-
mension would be the dimension m of the manifold that em-
beds a sample of an unknown distribution in a d—dimensional
space (d > m), satisfying certain smoothness constraints. If
the variables of a dataset are independent, then its intrinsic
dimensionality is the embedding dimensionality. However,
when there is a correlation between two or more variables,
the intrinsic dimensionality of the dataset is reduced ac-
cordingly. For example, each polynomial correlation (linear,
quadratic, etc.) reduces the intrinsic dimensionality by a
unit. Other types of correlations can reduce the intrinsic
dimension by different amounts, even fractional.

By knowing the intrinsic dimensionality of a dataset, it
is possible to decide how many attributes are required to
characterize the dataset. According to some research [8] [9],
correlation fractal dimension can be used to approximate
the intrinsic dimension Z of a dataset and to discard some
attributes (dimensions) until 2 is approached. Note that
the fractal dimension 2 of a dataset cannot exceed its em-
bedding dimensionality d and that there are [ 2] attributes
which cannot be determined from the dataset. Since Z < d,
there are at least d — [Z] attributes which can be corre-
lated with the others. Our claim is that a “good” subset
of the original variables (or an equivalent set) projects the
dataset into a space with fractal dimension close to the in-
trinsic dimension of the original dataset, thus preserving its
topological properties.

Some applications of dimensionality reduction are dis-
cussed in section 2. In section 3 we introduce a formaliza-



tion of the feature reduction problem, and in section 4 we
summarize the state of the art in dimensionality reduction.
The approach used to prove our claim is described in sec-
tion 5. The experimental results of our study are described
in section 6 and a brief conclusion of the work and ideas for
possible extensions to our comparative study are presented
in section 7.

2. APPLICATIONS

Dimensionality reduction is an important issue in many
types of applications. In database applications, multidimen-
sional index structures (e.g., R* tree, SS-tree) are used for
information retrieval and multi-modal queries. As the di-
mensionality of the records increases, query performances in
the index structure degrade and the resulting complexity be-
comes comparable to sequential scanning. Two of the major
research directions in finding an efficient way to overcome
this problem are to develop indexing structures designed for
high dimensional vector spaces, or to reduce the dimension-
ality so that the existing indexing techniques achieve satis-
factory levels of performance.

In classification applications, high dimensional data are
involved when large feature vectors are generated in order to
describe complex objects and to distinguish between them.
For a classifier, the estimation of the class probability distri-
bution in sparsely sampled high dimensional spaces affects
the reliability of the obtained classification results. Usually
the easiest way to avoid these problems is to reduce the fea-
ture space by selecting a subset of the features using the
classification performance on the training set as a measure
for selecting the features. A more appropriate technique is
to map the feature space into a lower dimensional space, pre-
serving as much as possible the topological structure of the
original space, and train the classifier in this new space [1].

In statistical applications, multivariate density estimation
with finite samples is difficult to accomplish. Computa-
tional approaches for density estimation based on the max-
imum likelihood (e.g., EM algorithm) are quite slow, result
in many suboptimal solutions, and depend strongly on ini-
tial conditions. In many cases it may be advantageous to
map the data into a lower dimensional space first and solve
the estimation problem in this new space.

3. PROBLEM DEFINITION

The two main approaches used for dealing with the curse
of dimensionality are Vector Quantization, and Dimension-
ality Reduction. Both approaches propose an approximate
solution to the density estimation of the data distribution.

In vector quantization, the given training examples are
approximated using a small number of prototype vectors
C ={c1,c2,...,cm} with m < n, where n is the number of
training examples in the d—dimensional space. Note that in
this case a distribution in a d—dimensional space is approx-
imated by a collection of points (prototypes) in the same
space, leading to the so called zero—order approximation
since this low—dimensional mapping/encoding is toward a
space with dimension zero (set of points). More complex
approximations can be used projecting on a 1 or 2 dimen-
sional space, and in this case we have first—order or second—
order approximations producing more compact encoding for
nonuniform distributions.

In dimensionality reduction, we have an encoding func-

tion G and a decoding function F, where G maps from the
input space R? to a lower—dimensional feature space R™,
and F maps from R™ back to the original space R%. In this
paper we focus on this approach. Our objective is to find a
mapping G from a d-dimensional input (sample) space R?
to some m-dimensional output space R™, where m < d,

G(z) : R* - R™

producing a low dimensional encoding z = G(z) for every
input vector . A “good” mapping G should act as a low
dimensional encoder of the original (unknown) data distri-
bution. Also, there should exist another “inverse” mapping

F(z) :R™ - R*

producing the decoding &’ = F(z) of the original input z.
Thus the overall mapping for such an encoding-decoding
process is

@' = F(G(x)).

We know from set theory that ||R%|| = ||R|| for any d € N,
which means that we can map invertibly and continuously
R? into R, for example using z-ordering or Hilbert curves.
In principle, this would allow us to find a (nonlinear) con-
tinuous mapping from R? into R™, with m < d, preserving
all the information. Of course, due to finite precision this is
of no practical application and we can only try to find the
best approximation mapping. To do this, we need to specify
a class of approximating functions (mappings):

f(z,w) = F(G(x))

parametrized by a vector of parameters w and then to find
a function (in this class) that minimizes the risk

R(@) = [ L2 p(e)de = [ L, faw)plade

where p(z) is the true distribution of the data. In practice,
since p(z) is unknown, we use the empirical distribution of
the data to approximate p(z). Commonly, the loss function
is the squared error distortion

L(ﬂ?,f(.??,(d)) = ||.’E - f(xaw)”z:

where || || denotes the usual L» norm on R?.

4. STATE OF THE ART

Common approaches used for dimensionality reduction
rely on some parametric and non—parametric models. Other
methods reduce the original feature space by heuristically
dropping some of the attributes. In this section we describe
some of these dimensionality reduction methods we used to
support our hypothesis.

4.1 Principal Components Analysis

Principal component analysis (PCA) involves a mathe-
matical procedure that transforms a number of (possibly)
correlated variables into a (smaller) number of uncorrelated
variables called principal components. The first principal
component accounts for as much of the variability in the
data as possible, and each successive component accounts
for as much of the remaining variability as possible.

In PCA, the data is summarized as a linear combination
of an orthonormal set of vectors. Let {z;};—; be a sample in
R? with mean # and covariance ¥, with spectral decomposi-
tion ¥ = UAU7 (where U is orthogonal and A is diagonal).



The principal component transformation y = U”T (x — %)
yields a reference system in which the sample has mean 0
and covariance matrix A containing the eigen—values of X.
One can now discard the variables with small variance by
projecting on the subspace spanned by the first few prin-
cipal components, and obtain a good approximation of the
original sample. The key property of PCA is that it attains
the best linear mapping x € RY — 2* € R™ in the sense of
the least squared sum of errors of the reconstructed data.

4.2 Factor Analysis

Factor Analysis is a statistical method for modeling the
covariance structure of high dimensional data using a small
number of latent variables [6]. It assumes that the data is
a linear combination of real-valued uncorrelated Gaussian
sources (factors). After the linear combination, each com-
ponent of the data vector is also assumed to be corrupted
with additional Gaussian noise (see Figure 1).

In maximum likelihood factor analysis, a d-dimensional
real-valued vector z is modeled using an m-dimensional vec-
tor of real-valued factors, z, where m < d. The generative
model is given by:

r=Az+u
where A is known as the factor loading matriz. The factors
are assumed to be ./ (0,I) distributed. The d dimensional
random variable w is distributed .4 (0, ¥), where ¥ is a

diagonal matrix. According to this model, = is therefore
normally distributed with mean 0 and covariance AA' + .
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Figure 1: Simple path diagram for a factor analysis
model

The goal of factor analysis is to find the A and ¥ that best
model the covariance structure of . The factor variables z
model correlations between the elements of z, while the u
variable accounts for the independent noise in each element
of z. The m factors play the same role as the principal
components in PCA: they are information projections of the
data. We first subtract the mean of the data and then model
the data as

x—p=Az+ u
We use the EM-algorithm to determine the values of A

and ¥ and determine the reduced space [6].

4.3 Self-Supervised Multi Layer Perceptrons

Neural networks can be used to implement some statisti-
cal methods as well as a mapping between two vector spaces.
The Self-Supervised MLP architecture (a.k.a. autoencoder)

implements this mapping using two layers of linear percep-
trons with d input, m hidden units and d output trained
to replicate the input in the output layer minimizing the
squared sum of errors with backpropagation. This approach
is called self-supervised, referring to the fact that during the
training each output sample vector is identical to the input
sample vector.

Reduction Projection G Inverted Projection F
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Figure 2: The Self-Supervised MLP architecture

A bottleneck MLP with a single hidden layer effectively
performs linear PCA, even with nonlinear hidden units [3].
In fact, in order to effectively implement a nonlinear dimen-
sionality reduction, the mapping functions F' and G must
both be nonlinear. Let us assume that F' is restricted to be
linear (as in the one hidden layer neural network model),
though G may be nonlinear. The process of dimensional-
ity reduction consists in finding functions F' and G that are
(approximately) functional inverses of each other. Since the
inverse of a nonlinear function cannot be linear, therefore,
if either function is linear, the other must also be linear.

Linear Self-Supervised MLP can be extended to imple-
ment non-linear PCA, using non-linear activation functions
and more hidden layers (see Figure 2). In this approach, the
subnet which leads to the hidden bottleneck implements the
reduction projection on the feature space and the following
subnet implements the inversion of such projection. Notice
that the backpropagation approach does not take advantage
of the inverse relationship between the structure of F' and
the structure of G.

5. APPROACH

In this paper we investigate the relationship between frac-
tal dimension and feature reduction (for approximation and
classification tasks). Our claim is that a good dimensional-
ity reduction/feature extraction algorithm projects the data
onto a feature space with dimensionality close to the in-
trinsic dimensionality of the data, preserving its topological
properties. We show that, using a real dataset, this holds
true, and therefore the fractal dimensionality of the result-
ing feature space can be used as an a-priori index for the
final performance of the classifier/index method build on it.

Since dimensionality reduction implies a transformation
of the feature space, we expect that the results of topology—
based classification methods like K-nearest neighbors (KNN)



Fractal Dimension | KNN Error | DT Error | Reconstruction Error
Original Space 5.0047 23.90 25.74 0.0
PCA Reduced Space 3.3509 45.94 36.54 30.02
FA Reduced Space 3.6111 34.35 40.74 32.76
NN Reduced Space 3.7104 24.94 31.32 21.48
High Variance Reduced Space 1.3609 47.68 41.30 78.91
Random Reduced Space 1.7433 51.04 52.66 78.91

Table 1: The Fractal Dimension and the Performance Evaluation of the Methods

which rely on a distance metric in the feature space will
be more correlated to the fractal dimension with respect to
other methods which rely on mutual information like deci-
sion trees (DT).

We use the described dimensionality reduction methods
and two simple baseline methods — a reduced space with n
randomly chosen features, where n = [2], and a reduced
space with the n features with highest variances. The second
baseline method is the easiest way to minimize the recon-
struction error and explain most of the variance in the data
without applying any transformations.

For practical applications, data preprocessing is often one
of the most important stages in the development of a solu-
tion, and the choice of preprocessing steps can often have
a significant effect on generalization performance [2]. The
preprocessing we do consists of a linear rescaling of the in-
put variables since in our dataset different variables have
typical values which differ significantly, and the typical sizes
of the inputs do not reflect their relative importance in de-
termining the required outputs. We treat each of the input
variables independently, and for each variable x; we calcu-
late its mean Z; and variance o7 with respect to the training
set and we then define a set of rescaled variables given by

We compute the fractal dimension of the datasets (see Sec-
tion 6) using the correlation integral and the classification
errors on the original data using all the attributes computed
by a DT and KNN !. The first one is the measure we use to
characterize the topological properties of the data and the
second one gives us an idea of the expected performances of
the feature reduction if it could keep all the relevant infor-
mation and the topological structure.

Our conjecture for choosing the reduced set of features is
that [2] will be a good heuristic. Having chosen the size of
the reduced feature sets, we run the dimensionality reduc-
tion methods (PCA, Factor Analysis, and Neural Networks),
keeping the defined number of features.

After applying dimensionality reduction methods, we mea-
sure their performance in terms of the reconstruction and
classification powers of the reduced feature set. At the same
time, we estimate the change in the topology structure of
the reduced feature space using the fractal dimension of the
projected data. We are interested in finding a correlation
between the two characteristics of the feature reduction pro-
cedure: information preserved by the extracted features and
the fractal dimension.

!The DT classification is based only on the information
given from a single attribute in predicting the class, while
the KNN classification uses the topology structure to deter-
mine the class.

6. EXPERIMENTAL RESULTS

In order to validate our approach we apply the dimension-
ality /feature reduction methods to a real dataset of classified
protein images with 862 records and 84 attributes each? [7].
We scale the data according to the method proposed in the
previous section and compute the fractal dimension of the
original and the rescaled dataset (using the correlation in-
tegral).

As expected, since the units of measure for different vari-
ables in the original dataset are not comparable, without
scaling we obtain a low fractal dimension of 1.6912. After
scaling the dataset we obtain a less skewed distribution and
the fractal dimension of the dataset increases to 5.0047.

According to the fractal dimension, the intrinsic dimen-
sionality of the dataset of protein images is 2 for the non-
rescaled version and 5 for the rescaled one. Therefore, we
use 5 as the dimension of the reduced space. For each of the
reduced feature spaces, we compute the FD using the cor-
relation integral. The results for the fractal dimension and
the performance evaluation of these spaces® are reported in
Table 1.

The results of the KNN classification task confirm our
claim. In Figure 3 we observe a monotonically decreasing
trend such that the higher the fractal dimension, the lower
the errors. Notice how, with rescaled data, the Neural Net-
work non-linear reduced space performs the best, after the
original dataset. This suggest that the Neural Network has
captured the instrinsic non-linearity in the data.

The relationship we were looking for is present also when
we use DT to classify the data (see Figure 4). The space ob-
tained by a few features randomly selected from the original
feature set has the highest classification error among all the
spaces. This space is an outlier in the general trend to have
lower error as the fractal dimension increases. A possible ex-
planation for this is that the features randomly selected were
minimally useful for classification and this heavily affects a
classification method that relies only on mutual information.

The reconstruction error results also show the correlation
with the fractal dimension of the reduced space and the rel-
ative topological properties (see Figure 5). However, the re-
construction error is not always the most important criterion
which we want to minimize. For example, noisy/random fea-
tures with high variance which do not carry any information
about the classification of the data instances (and can be,
therefore, unimportant for some tasks) can be completely

2Since the dataset has few records, we use the slope of the
linear part in the correlation integral to compute the fractal
dimension otherwise the box—counting method would not
give an accurate estimate of it.

3We use 5-fold cross-validation and t-test to verify the sta-
tistical significance of the different results.



omitted and the significant penalty which the reconstruc-
tion error gives to a dimensionality reduction method for
not being able to recreate those features should not be a
concern for us.

7. CONCLUSIONS & FUTURE WORK

In this paper we presented a comparative study of di-
mensionality reduction using fractal dimension and different
kinds of methods. We showed that a good dimensionality
reduction method preserves the intrinsic fractal dimension-
ality of the data and the closer the intrinsic dimensionality
of the dataset in the reduced space is to the intrinsic dimen-
sionality of the dataset in the original space, the better is
the classification achieved with the reduced feature set.

As future work it will be interesting to investigate how
we can effectively choose the dimensionality of the target
space by some heuristic measures extracted from the original
data. An idea arising from the current work is a method
for selecting relevant components in PCA space. We could
start with the first principal component, compute the FD of
the new space with just that component, then add another
component, recompute the FD of the two components, and
continue doing this until we see a flattening in the fractal
dimension, meaning that more features don’t change the
intrinsic dimensionality of the dataset. Another possible
extension is to consider other methods for dimensionality
reduction, such as principal curves, Self Organinzing Maps,
etc.
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Figure 3: Correlation between KNN error and frac-
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